首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we compare the in‐sample fit and out‐of‐sample forecasting performance of no‐arbitrage quadratic, essentially affine and dynamic Nelson–Siegel term structure models. In total, 11 model variants are evaluated, comprising five quadratic, four affine and two Nelson–Siegel models. Recursive re‐estimation and out‐of‐sample 1‐, 6‐ and 12‐month‐ahead forecasts are generated and evaluated using monthly US data for yields observed at maturities of 1, 6, 12, 24, 60 and 120 months. Our results indicate that quadratic models provide the best in‐sample fit, while the best out‐of‐sample performance is generated by three‐factor affine models and the dynamic Nelson–Siegel model variants. Statistical tests fail to identify one single best forecasting model class. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The model presented in this paper integrates two distinct components of the demand for durable goods: adoptions and replacements. The adoption of a new product is modeled as an innovation diffusion process, using price and population as exogenous variables. Adopters are expected to eventually replace their old units of the product, with a probability which depends on the age of the owned unit, and other random factors such as overload, style-changes etc. It is shovn that the integration of adoption and replacement demand components in our model yields quality sales forecasts, not only under conditions where detailed data on replacement sales is available, but also when the forecaster's access is limited to total sales data and educated guesses on certain elements of the replacement process.  相似文献   

3.
    
This paper tests the accuracy and predictability of two term structure models using both yields-only and factor-augmented specifications focusing on the recent COVID-19 crisis. In addition, we test the predictive ability of the yield curve on economic activity for the United States and other advanced countries. We provide evidence that models with an enhanced information set, including COVID-19 factors, improve interest rate forecasts for this period. Also, we point out that term structure models can determine future variations in economic activity but are time- and country-sensitive. Finally, out-of-sample analysis reveals that the use of factor-augmented term structure models, to reflect the current economic and market conditions, improves their forecasting accuracy.  相似文献   

4.
    
This paper addresses the issue of forecasting term structure. We provide a unified state‐space modeling framework that encompasses different existing discrete‐time yield curve models. Within such a framework we analyze the impact of two modeling choices, namely the imposition of no‐arbitrage restrictions and the size of the information set used to extract factors, on forecasting performance. Using US yield curve data, we find that both no‐arbitrage and large information sets help in forecasting but no model uniformly dominates the other. No‐arbitrage models are more useful at shorter horizons for shorter maturities. Large information sets are more useful at longer horizons and longer maturities. We also find evidence for a significant feedback from yield curve models to macroeconomic variables that could be exploited for macroeconomic forecasting. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
    
This paper explores the ability of factor models to predict the dynamics of US and UK interest rate swap spreads within a linear and a non‐linear framework. We reject linearity for the US and UK swap spreads in favour of a regime‐switching smooth transition vector autoregressive (STVAR) model, where the switching between regimes is controlled by the slope of the US term structure of interest rates. We compare the ability of the STVAR model to predict swap spreads with that of a non‐linear nearest‐neighbours model as well as that of linear AR and VAR models. We find some evidence that the non‐linear models predict better than the linear ones. At short horizons, the nearest‐neighbours (NN) model predicts better than the STVAR model US swap spreads in periods of increasing risk conditions and UK swap spreads in periods of decreasing risk conditions. At long horizons, the STVAR model increases its forecasting ability over the linear models, whereas the NN model does not outperform the rest of the models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This article discusses the use of Bayesian methods for inference and forecasting in dynamic term structure models through integrated nested Laplace approximations (INLA). This method of analytical approximation allows accurate inferences for latent factors, parameters and forecasts in dynamic models with reduced computational cost. In the estimation of dynamic term structure models it also avoids some simplifications in the inference procedures, such as the inefficient two‐step ordinary least squares (OLS) estimation. The results obtained in the estimation of the dynamic Nelson–Siegel model indicate that this method performs more accurate out‐of‐sample forecasts compared to the methods of two‐stage estimation by OLS and also Bayesian estimation methods using Markov chain Monte Carlo (MCMC). These analytical approaches also allow efficient calculation of measures of model selection such as generalized cross‐validation and marginal likelihood, which may be computationally prohibitive in MCMC estimations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Although both direct multi‐step‐ahead forecasting and iterated one‐step‐ahead forecasting are two popular methods for predicting future values of a time series, it is not clear that the direct method is superior in practice, even though from a theoretical perspective it has lower mean squared error (MSE). A given model can be fitted according to either a multi‐step or a one‐step forecast error criterion, and we show here that discrepancies in performance between direct and iterative forecasting arise chiefly from the method of fitting, and is dictated by the nuances of the model's misspecification. We derive new formulas for quantifying iterative forecast MSE, and present a new approach for assessing asymptotic forecast MSE. Finally, the direct and iterative methods are compared on a retail series, which illustrates the strengths and weaknesses of each approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
    
This paper examines the problem of how to validate multiple‐period density forecasting models. Such models are more difficult to validate than their single‐period equivalents, because consecutive observations are subject to common shocks that undermine i.i.d. The paper examines various solutions to this problem, and proposes a new solution based on the application of standard tests to a resample that is constructed to be i.i.d. It suggests that this solution is superior to alternatives, and presents results indicating that tests based on the i.i.d. resample approach have good power. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
    
Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub‐optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out‐of‐sample forecasting performance of various linear and GARCH‐type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decision making. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
    
Value at risk (VaR) is a risk measure widely used by financial institutions in allocating risk. VaR forecast estimation involves the conditional evaluation of quantiles based on the currently available information. Recent advances in VaR evaluation incorporate a proxy for conditional variance, yielding the conditional autoregressive VaR (CAViaR) models. However, early work in finance literature has shown that the introduction of power transformations has resulted in improvements in volatility forecasting. Having a direct association between volatility and conditional VaR, we adopt power-transformed CAViaR models. We investigate whether the flexible conditional VaR dynamics associated with power-transformed CAViaR models can result in better forecasting results than those assumed by the nontransformed CAViaR models. Estimation in CAViaR models is based on an early-rejection Markov chain Monte Carlo algorithm. We illustrate our forecasting evaluation results using simulated and financial daily return data series. The results demonstrate that there is strong evidence that supports the use of power-transformed CAViaR models when forecasting VaR.  相似文献   

11.
This study extends the affine dynamic Nelson–Siegel model for the inclusion of macroeconomic variables. Five macroeconomic variables are included in affine term structure model, derived under the arbitrage‐free restriction, to evaluate their role in the in‐sample fitting and out‐of‐sample forecasting of the term structure. We show that the relationship between the macroeconomic factors and yield data has an intuitive interpretation, and that there is interdependence between the yield and macroeconomic factors. Moreover, the macroeconomic factors significantly improve the forecast performance of the model. The affine Nelson–Siegel type models outperform the benchmark simple time series forecast models. The out‐of‐sample predictability of the affine Nelson–Siegel model with macroeconomic factors for the short horizon is superior to the simple affine yield model for all maturities, and for longer horizons the former is still compatible to the latter, particularly for medium and long maturities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
It is widely recognized that taking cointegration relationships into consideration is useful in forecasting cointegrated processes. However, there are a few practical problems when forecasting large cointegrated processes using the well‐known vector error correction model. First, it is hard to identify the cointegration rank in large models. Second, since the number of parameters to be estimated tends to be large relative to the sample size in large models, estimators will have large standard errors, and so will forecasts. The purpose of the present paper is to propose a new procedure for forecasting large cointegrated processes which is free from the above problems. In our Monte Carlo experiment, we find that our forecast gains accuracy when we work with a larger model as long as the ratio of the cointegration rank to the number of variables in the process is high. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Forecasting category or industry sales is a vital component of a company's planning and control activities. Sales for most mature durable product categories are dominated by replacement purchases. Previous sales models which explicitly incorporate a component of sales due to replacement assume there is an age distribution for replacements of existing units which remains constant over time. However, there is evidence that changes in factors such as product reliability/durability, price, repair costs, scrapping values, styling and economic conditions will result in changes in the mean replacement age of units. This paper develops a model for such time‐varying replacement behaviour and empirically tests it in the Australian automotive industry. Both longitudinal census data and the empirical analysis of the replacement sales model confirm that there has been a substantial increase in the average aggregate replacement age for motor vehicles over the past 20 years. Further, much of this variation could be explained by real price increases and a linear temporal trend. Consequently, the time‐varying model significantly outperformed previous models both in terms of fitting and forecasting the sales data. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
    
Using factors in forecasting exercises reduces the dimensionality of the covariates set and, therefore, allows the forecaster to explore possible nonlinearities in the model. For an American macroeconomic dataset, I present evidence that the employment of nonlinear estimation methods can improve the out‐of‐sample forecasting accuracy for some macroeconomic variables, such as industrial production, employment, and Fed fund rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
    
We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies—small samples, limited models, and nonholistic validations—by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new composite indicator, the integrated forecast score, we show that risk‐neutral densities outperform historical‐based predictions in terms of information content. We find that the variance gamma model generates the highest out‐of‐sample likelihood of observed prices and the lowest predictive errors, whereas the GARCH‐based GJR‐FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model, or the nonparametric Breeden–Litzenberger formula yield biased predictions and are rejected in statistical tests.  相似文献   

16.
    
In this paper, we put dynamic stochastic general equilibrium DSGE forecasts in competition with factor forecasts. We focus on these two models since they represent nicely the two opposing forecasting philosophies. The DSGE model on the one hand has a strong theoretical economic background; the factor model on the other hand is mainly data‐driven. We show that incorporating a large information set using factor analysis can indeed improve the short‐horizon predictive ability, as claimed by many researchers. The micro‐founded DSGE model can provide reasonable forecasts for US inflation, especially with growing forecast horizons. To a certain extent, our results are consistent with the prevailing view that simple time series models should be used in short‐horizon forecasting and structural models should be used in long‐horizon forecasting. Our paper compares both state‐of‐the‐art data‐driven and theory‐based modelling in a rigorous manner. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper explains the unpredictability of exchange rate movements at short horizons and provides a plausible answer on the exchange rate disconnect puzzle. By generalizing Chaboud and Wright's (Journal of International Economics 2005; 66 : 349–362) work, it is shown that exchange rates follow a martingale process at short horizons but over long horizons may contain some predictable structure. The empirical results applied to several major currencies of the US dollar support our hypothesis. This evidence is not coincided with the explanation of the inefficient market hypothesis under which exchange rate movements can be predictable in both short and long horizons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
    
This paper adopts the backtesting criteria of the Basle Committee to compare the performance of a number of simple Value‐at‐Risk (VaR) models. These criteria provide a new standard on forecasting accuracy. Currently central banks in major money centres, under the auspices of the Basle Committee of the Bank of International settlement, adopt the VaR system to evaluate the market risk of their supervised banks. Banks are required to report VaRs to bank regulators with their internal models. These models must comply with Basle's backtesting criteria. If a bank fails the VaR backtesting, higher capital requirements will be imposed. VaR is a function of volatility forecasts. Past studies mostly conclude that ARCH and GARCH models provide better volatility forecasts. However, this paper finds that ARCH‐ and GARCH‐based VaR models consistently fail to meet Basle's backtesting criteria. These findings suggest that the use of ARCH‐ and GARCH‐based models to forecast their VaRs is not a reliable way to manage a bank's market risk. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The purpose of this paper is to investigate the applicability of a contemporary time series forecasting technique, transfer function modeling, to the problem of forecasting sectoral employment levels in small regional economies. The specific sectoral employment levels to be forecast are manufacturing, durable manufacturing, non-durable manufacturing and non-manufacturing employment. Due to data constraints at the small region level, construction of traditional causal econometric models is often very difficult; thus time series approaches become particularly attractive. The results suggest that transfer function models using readily available national indicator series as drivers can provide more accurate forecasts of small region sectoral employment levels than univariate time series models.  相似文献   

20.
This paper concerns Long‐term forecasts for cointegrated processes. First, it considers the case where the parameters of the model are known. The paper analytically shows that neither cointegration nor integration constraint matters in Long‐term forecasts. It is an alternative implication of Long‐term forecasts for cointegrated processes, extending the results of previous influential studies. The appropriate Mote Carlo experiment supports our analytical result. Secondly, and more importantly, it considers the case where the parameters of the model are estimated. The paper shows that accuracy of the estimation of the drift term is crucial in Long‐term forecasts. Namely, the relative accuracy of various Long‐term forecasts depends upon the relative magnitude of variances of estimators of the drift term. It further experimentally shows that in finite samples the univariate ARIMA forecast, whose drift term is estimated by the simple time average of differenced data, is better than the cointegrated system forecast, whose parameters are estimated by the well‐known Johansen's ML method. Based upon finite sample experiments, it recommends the univariate ARIMA forecast rather than the conventional cointegrated system forecast in finite samples for its practical usefulness and robustness against model misspecifications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号