首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 781 毫秒
1.
采用盾构法进行隧道施工,难免会引起地层移动而导致不同程度的沉降,而采用Peck公式进行沉降预测时,首先要利用实测数据对该公式进行验证,并给出适合该地域的计算参数。文章利用合肥轨道交通盾构施工中的地表监测数据对Peck公式进行验证,同时计算出沉降槽宽度参数和地层损失率,为该公式在合肥盾构施工过程中预测地表沉降值提供了依据。  相似文献   

2.
哈尔滨粉质粘土地层隧道沉降规律   总被引:1,自引:1,他引:0  
基于哈尔滨地铁1号线同江路站-哈尔滨南站区间地表沉降的实测数据及地层信息,分析地表沉降槽宽度和地层损失率的变化规律,并在此基础上对Peck公式回归分析,得出适用于哈尔滨粉质黏土地层隧道的地表沉降修正系数。结果表明:粉质黏土地层沉降槽宽度与隧道埋深之间可用线性关系表示,此时沉降槽宽度系数的取值范围为0. 42~0. 6;当地层损失率在0. 46%~0. 59%之间时,能够更好地预测土体的体积损失量;当地表最大沉降修正系数的范围为0. 4~0. 7、沉降槽宽度修正系数的范围为0. 9~1. 3时,通过相似地质情况的哈尔滨地铁3号线旭升街站-松江生态园站区间实测数据进行验证,发现修正后的Peck公式能够更好地预测地表沉降。  相似文献   

3.
基于哈尔滨地铁1号线同江路站-哈尔滨南站区间地表沉降的实测数据及地层信息,分析地表沉降槽宽度和地层损失率的变化规律,并在此基础上对Peck公式回归分析,得出适用于哈尔滨粉质黏土地层隧道的地表沉降修正系数。结果表明:粉质黏土地层沉降槽宽度与隧道埋深之间可用线性关系表示,此时沉降槽宽度系数的取值范围为0. 42~0. 6;当地层损失率在0. 46%~0. 59%之间时,能够更好地预测土体的体积损失量;当地表最大沉降修正系数的范围为0. 4~0. 7、沉降槽宽度修正系数的范围为0. 9~1. 3时,通过相似地质情况的哈尔滨地铁3号线旭升街站-松江生态园站区间实测数据进行验证,发现修正后的Peck公式能够更好地预测地表沉降。  相似文献   

4.
工程实践表明,浅覆软弱地层中大直径小净距盾构隧道施工时,后行隧道施工显著影响先行隧道的安全.依托某盾构隧道工程,采用精细化数值模拟技术,建立盾构隧道施工模型,分析小净距浅埋盾构施工相互影响,并对不同净距下盾构隧道施工相互影响规律进行分析.结果表明:双线浅埋盾构隧道施工时,净距与地表沉降槽宽度呈线性正相关,与沉降峰值、管片附加变形、接头张开量和附加拉应力呈负相关;浅覆软弱地层盾构施工时应避免将封顶块置顶;陈村2号隧道净距小于5 m区段,先行隧道管片内力不满足规范要求,采取"隔断墙+水泥土搅拌桩"控制措施,实测和数值结果均表明控制效果良好,研究成果可为后续类似工程设计和施工提供参考.  相似文献   

5.
西安黄土地层盾构施工的Peck公式修正   总被引:1,自引:0,他引:1  
以西安黄土地区某区间段地铁隧道盾构施工实测数据为基础,通过peck公式的两个重要参数,即沉降槽宽度系数K,地层土体损失率η,对Peck公式进行修正,使其能适用于黄土地区,并为今后黄土地区地铁的盾构施工提供参考依据。研究表明,修正后的沉降槽宽度系数为K=0.42~0.445,地层损失率应根据不同的地层情况和施工参数进行确定,一般情况下取η=0.82%~1.65%是合理的。  相似文献   

6.
Peck法是目前预测地铁盾构隧道施工引起地表沉降最简便、应用最普遍的方法。但由于Peck法的应用存在一定局限性,套用不同地区的经验往往会产生误差,所以应基于当地的实测数据对其进行修正。根据南宁轨道交通盾构隧道施工引起地表沉降的监测数据,采用回归分析方法并引入最大地表沉降修正系数α和沉降槽宽度修正系数β,对Peck公式修正,得出了适于南宁地区圆砾、粉砂和粉土地质条件下的Peck公式。结果表明:当α值位于0.6~1.0,β值位于0.4~0.8时,所得的修正后Peck预测曲线与实测的地表沉降数据更为符合。  相似文献   

7.
采用二维隧道模型试验,探究砂土中不同埋深下盾构隧道开挖及补偿注浆对地表沉降变化的影响规律.试验表明,对于不同埋深的工况,盾构隧道开挖引起的地表沉降均可以用Peck公式有效预测,埋深C/D对地表沉降槽形状具有显著影响,且沉降最大值与土体损失率基本呈线性关系.正常体积范围补偿注浆时,随着埋深增加,地表最大抬升值不断减小,地表抬升范围逐渐增加.当补偿注浆体积达到某一值后,不同埋深工况地表最大抬升值与土体补偿率基本均呈线性关系.超体积补偿注浆时,超体积补偿注浆引起的地表最大抬升值与土体补偿率继续保持线性关系.随着土体补偿率的提升,不同埋深导致的地表抬升范围差异逐渐减小.  相似文献   

8.
为了确定盾构施工的横向预加固范围以及监测范围,确保盾构施工安全,以北京地铁14号线为工程背景,对盾构施工引起的横向沉降槽宽度进行了分析。提出了横向预加固范围以及监测范围,提出了一种计算方法;并在此基础上,确定适用于北京地层,横向沉降槽宽度与其系数的相关关系。研究结果表明:主要沉降应发生于距隧道轴线水平距离为2i范围内,i为沉降槽宽度系数,次要影响区域为2i~3i范围内;应用新方法计算盾构隧道施工横向沉降槽宽度为距隧道轴线水平距离约为1 h或2 D,h为隧道埋深,D为隧道直径;确定沉降槽宽度与沉降槽宽度系数之间的关系为2.5倍较3倍更为合理。  相似文献   

9.
依托深圳市超大直径钢顶管清污分流项目,研究了复杂软土地层地表沉降规律﹒首先,基于现场地表沉降50组实测数据对Peck公式进行修正,推导出拟合函数表达式,并给出了软土地层地表沉降Peck曲线上限和下限解;然后,采用有限元方法精细化模拟顶管施工动态过程,进行摩阻力、机头压力和土体弹性模量参数敏感性分析,总结出横、纵断面地表沉降失稳破坏区范围和影响参数临界值;最后,采用半解析-半数值法,确立了修正Peck公式各参数间的函数关系﹒结果表明:修正后的Peck公式可准确预测复杂软土地层地表沉降,其地层损失率取值范围为0.130%~0.238%;地表沉降与摩阻力呈正相关,与弹性模量呈负相关;顶管摩阻力和机头压力临界值应分别控制在15 kN和0.2 MN;横向地表沉降扰动区范围为2D~2.5D,纵向隆起区分布范围为1.25D~2D;沉降槽宽度i与覆跨比(H/D)呈指数函数关系,Smax/g~H/D关系可用修正Clough公式进行描述.  相似文献   

10.
针对盾构隧道开挖引起的地表沉降问题,基于GAP法模型的基本原理,通过对该模型的改进,借助FLAC2D进行数值分析,对盾构隧道的地表沉降规律进行了研究.得出了同一盾构直径随着隧道埋深增加的情况下,地表最大沉降值逐渐减小、地表沉降槽逐渐变宽的规律,且隧道埋深和地表最大沉降值存在某种线性关系.该成果对盾构隧道开挖引起的地表沉降分析具有一定的参考价值和指导意义.  相似文献   

11.
詹涛 《科学技术与工程》2023,23(14):6197-6206
为探究小曲率半径隧道盾构施工引起地表沉降的变化规律,利用Mindlin解建立小曲率半径隧道盾构施工引起地表沉降的解析计算模型,以南昌地铁1号线盾构隧道工程为依托,通过与现场监测和已有Mindlin解析计算模型的对比分析,验证本文所建立沉降预测模型的合理性,并依次从盾构附加推力、盾壳不均匀摩擦力和地层损失对地面变形的影响进行分析。结果表明:本文所建立的小曲率半径隧道盾构施工引起的地表沉降解析计算模型可有效应用于实际隧道工程的沉降预测,提高了预测精度;盾构开挖过程中,横断面地表沉降槽呈V形,近似正态分布,施工产生的地层损失对地面沉降的影响更大;随着盾构路径两侧推力及摩擦力分布不均程度的增加,地面沉降槽中心偏移情况而增大,地面沉降与地层损失呈非线性相关。研究结果可为类似拟建和在建盾构隧道工程提供理论指导与参考。  相似文献   

12.
由于曲线型盾构隧道卸荷扰动区的不对称性,使得隧道施工后地表沉降槽峰值出现了一定的偏移.故为便于对曲线型盾构隧道沉降峰值的偏移规律进行定性及定量分析,利用Midas/GTS有限元软件,以隧道的不同线路半径作为变量设定多个模拟工况,建立三维模型进行分析研究,且采用Origin软件对模拟的计算结果进行函数拟合;最后,依托乌鲁木齐市南农区间8标段小半径曲线盾构隧道的工程实例进行验证 研究表明:围岩变形、地表沉降峰值及地表沉降槽宽度均随曲线型隧道线路半径的增大而呈现出减小的趋势;地表沉降槽峰值点的偏移距离与隧道的线路半径关系近似反函数曲线.  相似文献   

13.
由于双线隧道存在复杂的耦合作用,盾构施工引起的地表沉降规律极为复杂,所以准确计算地表沉降较为困难。本文基于Peck公式和Chapman修正参数,考虑先行隧道的施工影响和双线隧道的相对位置关系,通过参数的经验量化,建立了双线隧道地表沉降的计算公式。此外,依托苏州市轨道交通S1号线工程,讨论公式在不同土层中的适用性及参数取值范围,在此基础上采用PLAXIS 3D有限元软件对双线隧道盾构施工进行了数值模拟。结果表明:在软土地层中进行盾构施工,应用本文修正公式计算得到的地表沉降值与数值模拟和现场实测结果均较为吻合。修正公式考虑了双线隧道的位置信息,可以定量反映隧道埋深和双线隧道间距对地表沉降的影响。该研究可为软土地区双线隧道盾构施工沉降计算提供参考。  相似文献   

14.
随着城市地铁建设进程加快,地铁隧道下穿人防工程时有发生,隧道和人防工程之间的相互影响成为目前迫切需要解决的问题。由于岩土体具有蠕变特性,研究其蠕变条件下的长期稳定性成为研究热点。采用D-P屈服准则耦合时间硬化率蠕变模型的有限元软件,研究了隧道不同埋深和直径以及穿越地下人防工程时围岩蠕变变形以及人防工程底板弯矩变化规律,弥补了弹塑性分析的不足。人防工程的存在减小隧道拱顶下沉;隧道衬砌减小隧道沉降以及人防工程底板弯矩。隧道埋深越大,隧道与人防工程底板净距值越大,人防工程底板弯矩越小;隧道直径越大,人防工程底板弯矩越大。一定埋深情况下,配筋率越大,最大允许隧道直径越大。埋深15~30 m,直径10~14 m时,隧道拱顶下沉随隧道埋深或直径增大而增大,增幅约为埋深或直径每增大1 m,沉降增加约0.018 m。不同隧道埋深或直径下,隧道拱顶下沉与人防工程底板弯矩呈线性关系。  相似文献   

15.
黄土地层盾构隧道开挖对地表沉降影响的有限元分析   总被引:3,自引:0,他引:3  
基于黄土地层,采用邓肯-张非线性弹性本构模型,考虑盾构隧道开挖过程对周边建筑物的影响,建立了盾构隧道衬砌与土体相互作用的有限元计算模型.对黄土地层中盾构隧道外径和埋深及其与邻近建筑物的距离对地表及相邻建筑物沉降的影响规律进行了数值分析,结果表明:在相同盾构外径下,地面沉降随隧道埋深的增加几乎呈线性减小趋势;在相同隧道埋深下,地面沉降随盾构外径的增加几乎呈线性增大趋势;无论盾构外径如何,隧道顸部及相邻建筑物处的地表沉降值均随隧道和建筑物水平距离与盾构外径比的增大而减小,也随隧道埋深的增大而减小.文中给出了受沉降影响较大的范围,可为地下工程施工时对周边建筑物及地基采取加固措施提供理论依据,并为西部地区的地下工程建设提供参考.  相似文献   

16.
盾构穿越保护建筑数值模拟预测与监控量测   总被引:1,自引:1,他引:0  
对既有建筑下盾构穿越施工引起的地表沉降规律进行多工况系统的3维数值模拟研究,认为在地层及隧道相关参数不变的情况下,既有建筑与隧道的相对位置、既有建筑的刚度、自重等对地表沉降规律具有明显的改变作用,主要表现为对沉降量、沉降槽宽度及形式等的改变.结合上海轨道交通11号线穿越历史保护建筑上海市徐家汇观象台工程,建立全3维模型对既有建筑下盾构穿越施工全过程进行模拟,预测地表沉降量.通过对穿越过程沉降测点的监测,对数值模拟预测的合理性进行了验证.  相似文献   

17.
浅埋暗挖隧道引起建筑物沉降的预测方法   总被引:1,自引:1,他引:0  
在考虑建筑物刚度的情况下,得到浅埋暗挖隧道引起建筑物沉降的预测方法,通过利用弹性地基梁原理,将经验公式法计算得到的浅埋暗挖隧道地表沉降值转换成沉降反力,再利用MIDAS-GEN软件计算沉降反力引起的建筑物沉降。利用工程实例验证该方法的可靠性,分析隧道与建筑物相对位置、基床系数、建筑物刚度以及土体损失率的影响规律。结果表明:该方法的计算结果与实测值比较吻合;建筑物沉降曲线的斜率随建筑物与隧道之间距离的增大而增大;建筑物沉降值随k的增大而减小;随建筑物刚度的增大,沉降曲线趋于直线变化,建筑物沉降差变小;随着土体损失率的增大,沉降曲线的斜率越来越大。可见该方法具有一定的可行性。  相似文献   

18.
分析了双圆盾构隧道的特点以及地表沉降的影响因素和不同计算方法.测试分析表明:双圆盾构隧道与圆形盾构隧道相比,双圆盾构隧道具有占用地下空间小、隧道断面形式多样化、切削面平衡操作简单、掘削土量少等优点;而隧道几何形状和埋深,土体性质的施工扰动,隧道衬砌的变形,盾构推进的平衡压力、姿态,同步注浆等是影响地表沉降的主要因素;最后得出双圆盾构隧道地表沉降与圆形盾构隧道具有相同的机理,但沉降值较大;双圆盾构隧道地表沉降槽的形态可以用正态函数表示,但最大沉降并不一定产生在隧道中心点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号