首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
将前人关于连通分次代数的一些结论推广到零阶部分为Artin半单环的正分次代数上.主要讨论了一般正分次代数为Gorenstein代数与它的平凡模Ext代数为Frobenius代数的关系,并得到结论:若A是整体维数有限的Koszul代数,且A是左有限的,则A是左Gorenstein代数当且仅当它的Keszul对偶A^!是右Frobenius代数.  相似文献   

2.
在迹极限的意义下, 特别是在单代数的条件下, 研究某些C*-代数性质的封闭性.假设A=(t2)limn -> ∞ (An,pn), An上至少有一个迹态或An,具有(SP) 性质,则A也有相同的结果;假设A=(t3)limn -> ∞ (An,pn),并且A是单代数,如果\TR(An)=0,tsr(An)=1和An具有投影消去律,则A也有相同的结果.  相似文献   

3.
以ΩM记R0-代数M到R0-单位区间的全体赋值之集. 证明一个同构于一族全序的至多可数的R0-代数的直积的子R0-代数M是赋值决定序的, 即x≤y当且仅当v∈ΩM, v(x)≤v(y). 然后通过一种自然的方式在ΩM上引入Fuzzy拓扑δ,研究拓扑δ及其相应的截拓扑的性质. 建立R0-代数的Fuzzy拓扑表现定理和Loomis-Sikorski定理.  相似文献   

4.
Poisson代数是一类具有李代数结构和结合代数结构的代数,且这两类代数结构之间需满足Leibniz法则。对于确定的复数a,b,当(a,b)≠(0,1)时,Vir(a,b)是W(a,b)的泛中心扩张,其中W(a,b)是Witt代数与其张量密度模的半直积。本文利用根系阶化的方法探讨李代数W(a,b)及Vir(a,b)(a=0,b≠0,±1)上的Poisson结构。特别地,李代数W(0,-2),Vir(0,-2)上的Poisson结构是非平凡的、非结合的、非交换的,而Vir(0,2)上的Poisson结构是非平凡的、结合的、交换的。  相似文献   

5.
利用山路引理、集中紧性原理和Hardy不等式,研究了带有变号势函数和Hardy项的临界p-双调和方程弱解的存在性问题。首先验证了山路引理的几何条件,然后证明当$0 < \mu < {\mu _0}$,山路水平$c < \dfrac{2}{N} S^{N / 2 p}-\mu^{{p^*} /\left(p^*-q\right)}G$时满足${(PS)_c}$条件,最终证明了该类临界p-双调和方程至少存在一个非平凡弱解。  相似文献   

6.
Poisson代数是指同时具有代数结构和李代数结构的一类代数,其代数结构和李代数结构满足Leibniz法则.W(a,b)型李代数是Witt代数与其密度张量模的半直积,很多无穷维李代数具有这种结构.利用根系阶化的方法先确定李代数W(0,1)上的Poisson代数结构,进一步确定李代数W(0,1)的中心扩张Vir(0,1)上的Poisson代数结构.  相似文献   

7.
主要讨论一阶量子广义Kac-Moody代数$\RU_q(2a)$的结构, 其中$a\in\bbz_{<0}$. 在此基础上, 刻画了量子广义代数$\RU_q(\fkg)$的另一种整形式.  相似文献   

8.
令\,$G$\,为素特征代数闭域上简约连通的代数群, $\mathfrak{g}$\,是\,$G$\,的李代数. 本文研究当\,$p$-特征\,$\chi$\,具有标准\,Levi\,型时简约模李代数\,$\mathfrak{g}$\,的上同调. 当\,baby Verma\,模的最高权为\,$p$-正则时, 得到了\,baby Verma\,模和扭\,baby Verma\,模之间的扩张群非分裂的充分必要条件.  相似文献   

9.
该文主要研究了Frobenius扩张上的投射余可解Gorenstein平坦模与可分Frobenius扩张上的投射余可解Gorenstein平坦维数.设环扩张R?A是Frobenius扩张,M是任意左A-模.首先证明了若AM是投射余可解Gorenstein平坦模,则RM也是投射余可解Gorenstein平坦模.其次,证明了若环扩张R?A是可分Frobenius扩张,则PGfdA(M)=PGfdR(M).  相似文献   

10.
设H是特征为0的代数闭域上的72维半单Hopf代数.通过对H的特征标代数的研究,证明了单H-模的维数只能是1,2,3,4,6或8.特别地,H是Frobenius型Hopf代数.另外,还证明了G(H)是非平凡的.  相似文献   

11.
设$\\mathcal {H}$是n维复Hilbert空间,$Q$是定义在$\\mathcal {H}$上的正交投影. 任给$\\mathcal {H}$的子空间$\\mathcal {M}$, 设$\\dim{\\mathcal {M}}=r,$ 在空间分解 $\\mathcal {H}=\\mathcal {M}\\oplus\\mathcal {M}^{\\perp}$下, $Q=\\left(\\begin{array}{cc}AB\\\\ B^*D\\end{array}\\right),$ 其中$A\\in{\\mathcal {B}}({\\mathcal {M}}), B\\in{\\mathcal {B}}({\\mathcal {M}}^{\\perp},{\\mathcal {M}}), D\\in\\mathcal {B}(\\mathcal {M}^{\\perp}).$ 利用算子分块的技巧, 对空间进一步分解, 讨论了$Q$的子矩阵$A,B,D$的性质及其之间的关系, 并进一步讨论了$\\mathcal {M}$上的正交投影$P$与$Q$之间的关系. 得到了(i) ${\\mathcal {R}}(P)\\cap{\\mathcal {R}}(Q)=$\\{0\\}$ \\Leftrightarrow \\dim {\\mathcal {R}}(A)=\\dim {\\mathcal {R}}(B),$ (ii) ${\\mathcal {R}}(P)+{\\mathcal {R}}(Q)={\\mathcal {H}} \\Leftrightarrow \\dim {\\mathcal {R}}(D)=n-r,$ (iii) ${\\mathcal {R}}(P)\\perp{\\mathcal {R}}(Q) \\Leftrightarrow \\dim {\\mathcal {R}}(A)=0.$}  相似文献   

12.
根据李代数的导代数的性质及同构条件完成三维实李代数的分类。当导代数维数为0和1时,由李括号运算的性质及基的变换可将李代数分为三类:L (3,0),L (3,-1),L (3,1)。当导代数维数为2和3时,根据内导子对应矩阵特征值的性质可将李代数分为五类:L (3,2,a),L (3,3),L (3,4,c),L (3,5),L (3,6)。  相似文献   

13.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设$ \mathcal{F} $是从$ D\subset \mathbb{C} $到${\mathbb{P}}^{3}\left(\mathbb{C}\right) $的一族全纯映射,$ {H}_{0}$和${H}_{l}({H}_{l}\ne {H}_{0}) $是$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $上处于一般位置的超平面,$l=1,2,\cdots,8 $。假定对于任意的$ f\in \mathcal{F} $满足条件:$f(\textit{z})\in H_l$当且仅当$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): \rhbr \langle x, \alpha_l \rangle=0\}$;若$f(\textit{z})\in H_l $的并集,有$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$大于或等于$\delta $。$0 < \delta < 1 $,$\delta $是常数,则 $ \mathcal{F} $在D上正规。  相似文献   

14.
利用从属关系给出~$\\left|\\left(g(z)/f(z)\\right)^\\alpha\\right|$ 的估计,并运用构造一个非负函数和对复变函数模的积分进行估计的方法, 对\\ $\\beta$ 级\\ $\\alpha$ 型\\ $\\lambda$-Bazilevi$\\check{c}$ 函数类\\ $B(\\lambda,\\alpha,\\beta)$的对数系数~$b_n$ 进行研究, 得到~$|b_{n}|\\leq A\\mathrm{log}n/n+B/n+32\\beta/(1-|1-2\\beta|)$, 其中~$A,B$ 是绝对常数, 推广了相关结果.  相似文献   

15.
对$\ell$阶BC型Cartan矩阵的2-仿射矩阵$\tilde{A}_{\ell+2}\times\ell+2}$,定义了相应的量子广义相交矩阵(GIM)代数$U_{q}$,对每个$1\leq i\leq\ell+2$,证明了$U_{q}$有自同构$T_{i}$,讨论了它们的基本性质. 所得到的结果推广了经典量子群和ADE型量子广义相交代数的Lusztig对称理论.  相似文献   

16.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设\begin{document}$ \mathcal{F} $\end{document}是从\begin{document}$ D\subset \mathbb{C} $\end{document}到\begin{document}${\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}的一族全纯映射,\begin{document}$ {H}_{0}$\end{document}和\begin{document}${H}_{l}({H}_{l}\ne {H}_{0}) $\end{document}是\begin{document}$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}上处于一般位置的超平面,\begin{document}$l=1,2,\cdots,8 $\end{document}。假定对于任意的\begin{document}$ f\in \mathcal{F} $\end{document}满足条件:\begin{document}$f(\textit{z})\in H_l$\end{document}当且仅当\begin{document}$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): $\end{document}\begin{document}$ \langle x, \alpha_l \rangle=0\}$\end{document};若\begin{document}$f(\textit{z})\in H_l $\end{document}的并集,有\begin{document}$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$\end{document}大于或等于\begin{document}$\delta $\end{document}。\begin{document}$0 < \delta < 1 $\end{document},\begin{document}$\delta $\end{document}是常数,则 \begin{document}$ \mathcal{F} $\end{document}在D上正规。  相似文献   

17.
讨论了李代数(g)以及由这个李代数诱导的Leibniz代数(g)(×)(g)的一些性质,主要从不变双线性型和导子看这两个代数之间的差异,证明了在特定条件下两者的不变双线性型维数是一致的.为进一步确定李代数(g)和(g)(×)(g)的差异,讨论了由(g)(×)(g)诱导的一类重要的李代数(g)(×)(g);最后证明了,如...  相似文献   

18.
使用矩阵等式等价变换的方法,~结合~$2$-范数和~$F$-范数的性质及它们与特征值的关系,~研究了可对角化非奇异矩阵特征空间的扰动上界.~得到了在~$\eta_{2}=\|{\bm A}^{-\frac{1}{2}}{\bm E}{\bmA}^{-\frac{1}{2}}\|_{2}<1$~的条件下,~这类矩阵特征 空间~$\|{\rmsin}\Theta\|_{F}$~的上界表达式.~对比发现,~所得到的结果是文献[2]定理~$4.1$~的推广.  相似文献   

19.
考虑非线性矩阵方程Xs+A*X-tA=I,其中A是n阶非奇异复矩阵,I是n阶单位矩阵.讨论了该矩阵方程Hermite正定解的特性,改进了以往相应的结论.  相似文献   

20.
定义复数域\,$\c$\,上的\,Laurent\,多项式代数\,$\c[t,t^{-1}]$~的\,$(r,s)$-微分算子~$\partial_{r,s}$.~% 给出该微分算子及~$\{ t^{\pm 1}\}$~生成的结合代数即~$(r,s)$-微分算子代数的一组基, 并在此基础上研究了~$(r,s)$-微分算子代数的导子代数及其非平凡二上圈.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号