首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
采用非真空热轧方法制备304不锈钢/Q235碳钢复合板材,利用OM、SEM、EDS等研究了不同压下率和轧后冷却方式下复合界面夹杂物、界面组织及力学行为的演变,并分析了C扩散对复合板界面组织形成及结合强度的影响。结果表明,随着轧制压下率的增加,界面夹杂物由块状向线型、连续点状乃至弥散点状分布变化。当压下率较低(28%)时,复合板剪切断裂位于结合界面处,随着压下率增加至47%及以上,复合板断裂位置为脱碳铁素体区。另外,热轧复合板经水冷工艺处理后,由于冷却速率较快,要抑制碳钢侧C元素的扩散,避免复合界面处脱碳区域的形成,从而提高了复合界面的结合强度。  相似文献   

2.
选取纯Ni箔作过渡层,采用真空热压扩散工艺,在加热温度480℃、压力10 MPa、真空度1.0×10-2Pa的工艺条件下,制备了变形铝合金2024和不锈钢0Cr18Ni9Ti双金属复合材料.利用扫描电子显微镜、能谱仪、X射线衍射仪和显微硬度仪等测试分析方法,对双金属复合材料的2个连接界面及基体进行了组织、性能分析.结果表明:不锈钢/纯Ni界面形成了宽约8μm的互扩散区,但其过渡区无金属间化合物生成;Al/Ni界面生成了宽约4μm的扩散过渡区,过渡区的相组成为金属间化合物Al3Ni2、Al3Ni及Al3Ni5.  相似文献   

3.
研究在不同复合比及温度条件下冲击载荷对热轧不锈钢复合板力学性能的影响。结果表明,热轧复合板随覆层厚度增大或试验温度升高,其冲击吸收能增大,覆层厚度为8mm时,冲击功达到稳定值150J;碳钢层断面为解理面与韧窝混合断裂形貌,不锈钢层断面为韧窝断裂形貌,靠近复合界面不锈钢侧呈沿晶断裂与韧性断裂形貌;复合界面处开裂情况对缺口位置不敏感;热轧不锈钢复合板冲击加载过程复合界面不易开裂。  相似文献   

4.
利用特厚规格复合板与较薄规格复合板进行非对称组坯,采用ABAQUS有限元软件对其热轧过程中的应变、接触应力及温度分布进行计算,并通过温度补偿及冷却控制的手段,对热轧非对称复合坯的可行性进行模拟分析。结果表明,采用非对称组坯设计,有利于特厚复合板碳钢层与不锈钢层在各道次轧制中的界面结合;通过控制复合坯上、下表面的温差,能有效改善板坯翘曲现象,并可一次性获得一块宽幅特厚复合板与一块宽幅较薄规格复合板,提高生产效率;此外,采用非对称组坯设计还可实现控轧控冷,保证芯部不锈钢与碳钢的协同变形,促进其界面结合。  相似文献   

5.
NiCrAlY涂层/TC4基体界面反应机理   总被引:2,自引:0,他引:2  
采用电弧离子镀技术在TC4(Ti6Al4V)合金基体表面沉积制备NiCrAlY涂层.通过扫描电镜与能谱分析、X射线衍射分析及显微硬度测试,研究真空热处理对NiCrAlY涂层组织性能的影响;分析界面反应产物的形成过程;讨论Cr元素在界面反应中的作用机制.研究结果表明:真空热处理后NiCrAlY涂层中有γ'-Ni3Al相析出,提高了涂层的表面硬度;在870℃以下热处理,NiCrAlY涂层/TC4基体界面反应产物的出现顺序依次为:相变影响区→Ni3(Al,Ti)和Ti2Ni化合物层→TiNi化合层;Cr元素在870℃以上开始扩散并参与界面反应,形成TiCr2化合物.  相似文献   

6.
将传统CO2气体保护焊与喷射送粉法复合,在Q235碳钢表面堆焊Fe-C-Cr-BNi系合金,研究了Ni元素含量变化对堆焊层组织和硬度的影响.利用金相显微镜观察堆焊层组织,结合EDS、XRD分析堆焊层的相成分,采用洛氏硬度计测试堆焊层表面的硬度.研究结果表明:堆焊层由马氏体、奥氏体以及(Fe,Cr)7C3和(Fe,Cr)2B硬质化合物组成.堆焊层熔合区由固溶体组成,过热区晶粒粗大,母材区组织均匀.堆焊层的HRC值范围为51.1~56.5,随着Ni含量的增加,堆焊层的硬度缓慢降低.  相似文献   

7.
双金属板热轧复合模拟及最小相对压下量的确定   总被引:3,自引:0,他引:3  
在对复合板轧制过程中的粘合特性进行分析的基础上,采用了合理的轧制和界面假设条件,应用Marc有限元软件建立了包括上辊、双层金属在内的三维模型,对不锈钢/碳钢复合板的热轧复合过程成功的进行模拟,获得了不同相对压下量条件下,轧制变形区内应力应变的分布、界面上应力分布以及接触表面上轧制力的三维分布。在此基础上分析得出了最重要的轧制工艺参数,即不锈钢/碳钢复合板热轧复合所需的最小相对压下量,这与在某钢厂所作的生产性试验是一致的。  相似文献   

8.
通过累积叠轧法制备泡沫铝.采用称重法研究泡沫铝孔隙结构,利用光学显微镜观察泡沫铝孔隙形貌.发现以TiH2为发泡介质,当发泡温度660~680℃和发泡时间6~10 min时,利用累积叠轧法制备泡沫铝的孔隙结构特性最好.发泡温度和发泡时间的最佳值与发泡剂用量有关,TiH2质量分数为1.5%,在670℃发泡8 min,泡沫铝的孔隙率可达到42%,孔径为0.43 mm.以制备的泡沫铝为夹芯,通过轧制复合制备了TC4钛合金/泡沫铝芯和1Cr18Ni9Ti不锈钢/泡沫铝芯三明治板.利用光学显微镜和能谱仪研究了三明治板的界面.面板与芯板间的化合反应形成了界面的反应层,界面实现了冶金结合.  相似文献   

9.
通过累积叠轧法制备泡沫铝.采用称重法研究泡沫铝孔隙结构,利用光学显微镜观察泡沫铝孔隙形貌.发现以TiH2为发泡介质,当发泡温度660~680℃和发泡时间6~10 min 时,利用累积叠轧法制备泡沫铝的孔隙结构特性最好.发泡温度和发泡时间的最佳值与发泡剂用量有关,TiH2质量分数为1.5%,在670℃发泡8 min,泡沫铝的孔隙率可达到42%,孔径为0.43 mm.以制备的泡沫铝为夹芯,通过轧制复合制备了 TC4钛合金/泡沫铝芯和1Cr18Ni9Ti 不锈钢/泡沫铝芯三明治板.利用光学显微镜和能谱仪研究了三明治板的界面.面板与芯板间的化合反应形成了界面的反应层,界面实现了冶金结合.  相似文献   

10.
研究了宽带激光熔覆铸造WCp /Ni基合金复合涂层结合界面组织特征。结果表明结合界面微区组织特征为细小的共晶体组织、过渡层组织以及白亮带组织。白亮带及过渡层中主要含有Fe ,Cr,Ni,Si等元素。白亮带主要是单相的γ - (Fe ,Cr ,Ni,Si)固溶体组织。从熔覆区→过渡层→白亮带的平均显微硬度值呈梯度分布。复合涂层结合界面主要元素、微观组织结构和显微硬度呈梯度分布的特征 ,提高了涂层与基材之间的匹配性 ,缓解应力集中 ,避免裂纹形成 ,实现了基材与涂层良好的冶金结合。  相似文献   

11.
运用四层对称轧制复合法对不锈钢覆铝板的生产工艺进行了研究。通过与传统的二层非对称轧制复合对比,发现四层对称轧制复合法的生产效率提高了近1倍,制备的复合板较平直;在试验条件下,四层对称轧制复合时不锈钢、铝的延伸系数相差较小;四层对称轧制复合制备的复合板的结合强度比二层非对称轧制复合的略大。  相似文献   

12.
应用ANSYS有限元软件分析了热轧复合的不锈铜复合板在冷轧过程中的变形特性,界面结合强度的分析给定以及确定成卷可逆带张力冷轧时的最大道次压下量值。  相似文献   

13.
首道次轧制对复合钢板组织和性能的影响   总被引:1,自引:0,他引:1  
利用真空轧制复合法在不同的首道次轧制压下率下对成分、状态、尺寸等相同的钢板进行了热轧复合,研究了5%,10%,15%三组不同首道次压下率真空轧制复合板的界面组织及Z向力学性能,分析了首道次压下率对复合性能的影响.实验结果表明:随着首道次压下率的增大,界面生成物尺寸逐渐变小,数量减少,形态由长条状逐渐过渡为弥散分布的细小颗粒状;在首道次压下率为15%时,复合板界面已非常洁净;复合板Z向抗拉强度、延伸率、断面收缩率及塑性都随首道次轧制压下率的增大而逐渐改善.  相似文献   

14.
激光熔覆层网状添加物对裂纹控制的影响   总被引:4,自引:0,他引:4  
激光熔覆是新型表面强化技术,但熔覆层裂纹是限制其应用的主要难题.在熔覆层中加入不锈钢网,降低了熔覆层中的应力值,控制了熔覆层中的裂纹.对3种熔覆材料的实验验证了网丝的加入能有效地降低熔覆层的裂纹率.金相分析显示,随着网丝直径的增大,熔覆层中网丝未完全熔解,它与熔覆材料、基体形成冶金结合,保证了熔覆层的完整性,有效地控制了熔覆层的裂纹.实验工艺显示,对Ni45和Co02这2种粉末,在基体不预热的情况下,这项工艺技术可得到无裂纹的大面积熔覆层.  相似文献   

15.
采用轧制工艺制备了0.10 mm厚的6.5%Si高硅电工钢超薄带,并用X射线衍射技术对冷轧过程中的形变织构演变规律进行了研究,进而提出了分别有利于λ(100//ND,ND为轧面法线方向)和η(100//RD,RD为轧向)再结晶织构优化的形变织构控制方法.研究表明,50%~70%压下率有利于η再结晶织构优化,易于促进S=0.5层强η再结晶织构的形成.小于30%压下率和91%~97%压下率均有利于λ再结晶织构优化,其中30%的压下率更适合于二次冷轧法制备高硅钢超薄带时λ再结晶织构控制.  相似文献   

16.
王峰 《科技资讯》2011,(16):96-98
卷取区域的堆钢始终是制约CSP生产线2.7mm以下薄规格轧制的瓶颈之一.薄带轧制时,如何避免带钢的头部超薄出现(0.55-左右),避免"舌型",实现带钢厚头轧制,是困扰轧钢界的难题,目前还没有根治.因此,本文对地下卷取机的工艺结构进行优化设计,依此来重新规范带钢头部在卷取机卷取时的行走路线.解决卷取区域的堆钢现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号