首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
提出了一种改进隐马尔可夫模型(HMM)的方法,即把遗传算法应用到Baum-Welch算法B值的优化当中,解决了Baum-Welch算法容易陷入局部最优解的缺点,得到了全局最优解,提高了语音识别系统的识别率。  相似文献   

2.
基于自适应伪并行遗传算法的动力学参数识别   总被引:1,自引:0,他引:1  
为研究结构动力学参数识别问题,引入一种新的度量种群多样性的指标,构造了新的自适应遗传算子,结合伪并行遗传算法,改进了遗传算法的全局收敛性和收敛速度;利用ANSYS程序的参数编程,将其成功应用于动力学模型中弹性模量和阻尼的识别.数值试验表明,该方法具有满意的识别效果,并具有较强的抗噪能力,可用于工程实际.  相似文献   

3.
基于话者分类和HMM的话者自适应语音识别   总被引:2,自引:1,他引:2  
本文提出了一种基于话者分类和HMM的话者自适应语音识别方法,采用对参考话者聚类、并按话者类分别建立HMM模板的策略,对于新注册的用户,系统只需利用其极少量的语音,便可将与之最相近的一类模板指派给新用户,再采用基于谱空间映射的两级自适应方法,使系统自适应到用户的模式下工作.这种方法既提高了识别性能,又降低了自适应的难度,还有利于HMM的建立.讨论了话者分类数和自适应语音数据对话者自适应效果及识别性能的影响,提出了一种在自适应语音数据不足情况下仍具有较好自适应效果的基于FVQ的码本自适应改进算法,该算法还具有对自适应字表不敏感的特点.  相似文献   

4.
基于HMM的孤立字识别   总被引:1,自引:0,他引:1  
本文以HMM(隐马尔可夫模型)为基础研究孤立字的汉语语音识别。孤立字的汉语语音样本首先经过人工切分去除寂静段,然后进行分帧处理;对每一帧语音进行频域预加重和时域汉明窗加权处理后,提取该帧的39维的MFCC混合参数(Mel频率倒谱参数);把该字所有帧的MFCC混合参数作为该字HMM模型的观察序列对其进行训练。通过在小人群范围内对0-9这十个孤立数码语音的大量实验,得到了很好的识别效果。  相似文献   

5.
为实现软件的自适应,针对复杂多变的运行环境,提出一个基于隐Markov模型(HMM)的自适应软件决策模型.首先运用高斯混合模型(GMM)对初始环境进行分类,然后使用softmax回归对感知环境进行归类划分处理,最后利用HMM代替人工干预进行软件决策.实验结果表明,该自适应软件模型在感知环境发生变化的条件下,能很好地实现软件自适应决策.  相似文献   

6.
以隐马尔可夫模型和动态纹理模型为代表的动态贝叶斯网是描述步态序列的重要方法,但都存在一些不足之处.提出了一种新的动态贝叶斯网——分层时序模型,该方法采用分段线性逼近非线性和用各段的动态纹理模型作为隐状态,将隐马尔可夫模型和动态纹理模型做了结合,充分发挥了其优势.该方法在CMU Mobo步态数据库和CASIA步态数据库B上做了评估,结果充分显示了分层时序模型的高性能.  相似文献   

7.
基于改进自适应遗传算法的仿真研究   总被引:2,自引:0,他引:2  
交叉概率Pc和变异概率Pm是遗传算法中重要的参数,自适应遗传算法中Pc和Pm能根据个体适应度差异自适应地调节其大小,在快速收敛和全局最优之间获得了较好的平衡,但自适应遗传算法对于进化初期不利.改进的自适应遗传算法避免了进化初期较优个体处于停滞不前的状态.分别用3种算法对典型的测试函数进行训练,仿真结果表明:改进的自适应遗传算法在收敛速度和寻最优解方面是最优的.  相似文献   

8.
本文在统一的框架下描述了隐马尔柯夫模型(HMM)用于语音识别时的各种形式,包括离散HMM、连续混合密度HMM、半连续HMM和最大分量连续HMM等,指出各种模型均是统一形式下的导出形式。文中就离散HMM、连续混合密度HMM和最大分量连续HMM在非特定人全音节汉语语音识别中的应用,从识别率和复杂度两方面进行了性能比较。为提高最大分量连续HMM的识别性能;提出了一种修正的训练算法。  相似文献   

9.
利用可穿戴式加速度传感器采集手势动作信息,研究了基于隐马尔可夫模型的手势识别技术.首先采集手势加速度数据,采用改进的SWAB算法进行自动端点检测,通过提取相应的手势特征,利用HMM对手势指令建模,并采用K-means算法矢量量化手势特征序列,以提高手势识别性能.实验表明,本文采用的方法能够有效识别手势动作.  相似文献   

10.
提出了一种基于改进隐马尔科夫模型的用户行为识别方法.采用遗传算法用于优化隐马尔科夫模型的初始参数,将混沌算子代替遗传算法中高斯变异算子,以避免传统遗传算法在收敛过程中的停滞和早熟问题,并有效解决传统隐马尔科夫模型中Baum-Welch算法对初始参数敏感的问题.此外,采用UCI中ADLs数据对用户行为进行识别,实验结果表明该方法具有很高的识别率和可靠性.  相似文献   

11.
噪声环境中基于HMM模型的语音信号端点检测方法   总被引:8,自引:1,他引:8  
在噪声环境下如何提高语音信号端点检测的准确性是自动语音识别(ASR)研究中的一个重要课题.常用的基于短时能量的端点检测方法对于能量较低的音节或在信噪比较低的环境下,检测性能不够理想.讨论了一种基于HMM模型的语音信号端点检测方法.先用训练的方法生成背景噪声和废料的模型,再用Viterbi解码算法对待测信号进行处理,并给出了具体的实现方法.实验测试结果表明,基于HMM的端点检测方法的检测性能接近于人工检测,方法是有效的.  相似文献   

12.
人脸在视频节目中代表了重要语义信息 ,提出使用支持向量机和隐马尔可夫链混合模型对人脸进行识别 ,然后把识别结果进行高斯聚类 ,实现视频节目的内容标注 .具体步骤如下 :首先建立人脸肤色模型 ,对视频图像中可能的人脸区域进行定位 ;从定位区域提取人脸各个器官的独立基特征 ,然后使用支持向量机和隐马尔可夫链混合模型对定位区域进行人脸识别 ,最后由高斯聚类完成视频节目的语义标注  相似文献   

13.
介绍了一个在微机上实现的有限词,特定人语音识别系统,该系统采用连续,M元高斯混合密度的隐式马尔柯夫模型(CDHMM)为识别方法,以修改后的BaumWelch方法为训练重估算法,文中提出了对语音特征矢量非线性归一化预处理,和对训练数据不足的HMM模型特征空产是进行后处理修正的算法,还提出了一种基于语音知识的模型初始化的方法,经实验证明,系统的识别率可以达到90%以上。  相似文献   

14.
利用基因算法训练连续隐马尔柯夫模型的语音识别   总被引:2,自引:0,他引:2  
为了提高语音识别系统的性能,基于全域优化的思想,提出了一种用于训练连续隐马尔柯夫模型(CHMM)的新算法——基因算法,并将该算法用于语音识别.用该算法训练CHMM,可得到最佳的模型参数,从而提高了语音识别率.利用该算法训练CHMM,不需要对CHMM的每一个参数单独进行估值,能够在一定的程度上提高训练速度.文中阐述了整个算法,给出了计算机模拟结果,并与传统的训练方法进行了比较.  相似文献   

15.
一种基于隐马尔可夫模型的在线手写签名认证算法   总被引:1,自引:0,他引:1  
给出一种对签名特殊点的提取方法, 并以此特殊点作为签名的分割点, 获取每段中的重要特征进行分析. 在此基础上, 提出一种基于隐马尔可夫模型(HMM)的在线手写签名认证算法, 并利用第一届国际手写签名认证竞赛(SVC 2004)的测试数据库检验了算法的有效性.  相似文献   

16.
针对传统的 HMM 模型中状态持续时间不长的不足,且在计算量大的情况下,语音识别精度不高,训练时间长,训练误差较高,提出了一种基于语音状态持续时间长的 HMM 模型。 首先,令状态转移矩阵的对角线元素全为 0,去掉自转移弧,再增添以参数化的函数描述持续时间的高斯分布,再通过帧与帧相互 之间的关联程度,将每帧都计算进去;其次,通过重估公式反复计算每条弧被指定的转变概率和可见符号序列输出最原始的数值概率,直至收敛,停止运算。 最后,在 HMM 模型改进前后实验中得到更小的训练误差,下降速度更快,计算量较之前减少多,更容易达到收敛,其概率输出与它前面一个概率输出的差值与该概率 输出值的比值大于 HMM 模型设定的初始值。 与传统 HMM 模型实验比较,基于持续时间状态的 HMM 模型可以在一定程度上降低训练次数和训练时间,提高识别语音的精确度,基本完成了语音识别系统的功能。  相似文献   

17.
Coupled Hidden Markov Model (CHMM) is the extension of traditional HMM, which is mainly used for complex interactive process modeling such as two-hand gestures. However, the problems of finding optimal model parameter arc still of great interest to the researches in this area. This paper proposes a hybrid genetic algorithm (HGA) for the CHMM training. Chaos is used to initialize GA and used as mutation operator. Experiments on Chinese Tai‘Chi gestures show that standard GA (SC, A) based CHMM training is superior to Maximum Likelihood (ML) HMM training. HGA approach has the highest recognition rate of 98.0769%, then 96. 1538% for SGA. The last one is ML method, only with a recognition rate of 69.2308 %.  相似文献   

18.
MDI为HMM训练的优化准则之一,但传统的MDI是基于局部最优求解的,所得的解也是一个局部最优解,而进化计算则是基于全局搜索的。为此,提出了将MDI及进化计算相结合来训练HMM的方法。各个模型用个体来表示,个体的适应值采用模型的最小差别信息。实验结果表明,该方法所得的系统识别率高于传统的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号