首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 8 毫秒
1.
本在顶色辅助的人工色(TC2)理论框架下,研究了中性toppion的产生过程e^-γ→e^-∏第t^0.结果表明这一过程的散射截面可达到几十个fb,并且在未来e^ e^-线性对撞机上中性的toppion介子的年事例数多于10^3个.因此,这一产生中性toppion的过程为我们探测toppion介子和检验了TC2模型提供了良机.另一方面,e^-γ→e^-∏t^0过程的散射截面比标准模型(SM)和最小超对称模型(MSSM)下的类似过程大一个量级(例如SM下的e^-γ→e^-H和MSSM下的e^-γ→e^-H^0(A^0,h^0)过程).因而,我们很容易把中性的toppion介子同SM和MSSM下产生的Higgs玻色子区分开来.  相似文献   

2.
在标准模型 (SM )中 ,人们预言存在一种基本的标量粒子 :Higgs粒子 ,利用Higgs场的对称性自发破缺机制使规范粒子获得质量 ,并利用汤川耦合方式使费米子获得质量 .但是 ,至今SM所预言的Higgs粒子在实验上还没有找到 .另外 ,SM中的Higgs部分还将导致理论的“平庸性”和“不自然性”等问题 .因此 ,目前多数理论物理学家深信 ,在更高的能标下 ,SM所描述的相互作用规律和粒子性质可能不再完全正确 ,会有新的相互作用和物理现象出现 ,SM只是某种更基本理论的低能有效形式 ,可能存在超出SM的理论 (通称新物理 ) .一些物理学家提出了电弱对…  相似文献   

3.
Top-Higgsh_t~0和稀有Top衰变t→cW W@鲁公儒$河南师范大学物理与信息工程学院!河南新乡,453002 @高广平$河南师范大学物理与信息工程学院!河南新乡,453002&&  相似文献   

4.
虽然标准模型(SM)已被大量的精确实验所检验,但到目前为止,高能物理实验还未发现Higgs粒子,电弱对称自发破缺机制还不清楚.因此,标准模型只能是一个低能有效理论,电弱对称自发破缺机制问题很可能涉及超出标准模型的新物理,并为最终解决质量起源问题提供线索,因此这个问题是当前粒子物理中最重要的问题之一,也是当前和未来的高能对撞机的重要研究内容之一.  相似文献   

5.
顶夸克的大质量问题暗示了新的动力学的存在,可能与电弱动力学破缺有于,Glashow—Weinberg-Salam理论虽然在描述电磁相互作用和弱相互作用当中取得了巨大成功,然而电弱破缺机制仍然不清楚,因此探索这一机制将是理论研究和未来高能对撞机的共同的重要任务之一,要想找到质量之源,我们必须找出电弱破  相似文献   

6.
虽然粒子物理的标准模型 (SM )已被大量的精确试验所验证 ,但是它不能解释电弱对称性破缺问题 ,而且由于Higgs场的引入 ,导致了理论的“平庸性”和“不自然性”等问题 .为了解决SM存在的上述问题 ,人们提出了一些超出标准模型的理论 (通称新物理 ) ,人工色technicolor(TC)理论是新物理中具有代表性的一类理论 ,它去掉了基本的Higgs场 ,引入了一种类QCD的强相互作用 (TC)力 .在Λ~ 1TeV标度 ,TC相互作用实现了电弱对称性动力学破缺 .这类理论预言了一些新的、有质量的规范玻色子和赝标哥尔斯通粒子的存在 .多年来 ,人们通过对TC理论…  相似文献   

7.
目前,电弱对称性破缺(EWSB)机制问题仍是标准模型(SM)中最不明朗的部分.理论方面,人们提出了一些超出标准模型的理论,如最小超对称模型MSSM、顶色辅助的人工色(TC2)模型[1]等,这些模型需要实验的检验,这就需要理论学家开展唯象研究,为实验提供有价值的理论指导.实验方面,正在运行的质子 反质子对撞机Tevatron和2007年运行的LHC质子 反质子对撞机的主要任务之一就是探测 SM中的 Higgs粒子或超出标准模型的理论所预言的新粒子,高能量高亮度对撞机的运行有望解开电弱对称性破缺之谜.TC2模型最吸引人之处在于它不仅合理解释了 EWSB,同…  相似文献   

8.
9.
电弱对称性动力学破缺理论 ,例如TC(Technicolor)理论 ,是解决电弱对称性破缺机制问题的重要候选者 .其中一种比较现实的TC模型是Topcolor辅助的Technicolor(TC2 )模型 ,它同时解决了重的顶夸克问题 .在TC2理论中 ,电弱对称性破缺主要由Technicolor部分产生 ,ETC相互作用给出所有普通夸克和轻子质量 ,也产生顶夸克质量的很小一部分 ,Topcolor对电弱对称性破缺也有贡献 ,同时 ,贡献出顶夸克质量的大部分 .TC2理论最重要的预言是 ,在几百个GeV能量区域内 ,存在着三个赝哥尔…  相似文献   

10.
在Topcolor辅助的Technicolor(TC2)模型下,研究了γγ对撞中荷电Top-pion介子∏t-的产生过程γγ→t∏t-.研究结果表明,在一定的参数范围内,这个过程的产生截面大于10fb,如果未来直线对撞机ILC的年积分亮度可实现100fb-1,则每年可以观测到1000多个t∏t-产生事例.这意味着,在ILC上有望通过γγ→S∏t-来探测∏t-介子的产生,进而来检验TC2模型.  相似文献   

11.
12.
描述电弱相互作用的电弱统一模型即Glashow—Weinberg—Salam(GWS)模型和描述强作用的量子色动力学(QCD)组成了粒子物理学中的标准模型(SM).迄今为止,它是大家普遍承认的最好的描述弱、电、强3种相互作用的理论,大量实验成功地验证了这一模型.但是,其电弱理论中为产生电弱对称性破缺而引入的Higgs粒子,至今仍未在高能物理实验中发现,电弱对称性破缺(EWSB)机制还不清楚.  相似文献   

13.
由于TC2模型能将人工色与top夸克凝聚的思想完美地结合起来[1],并且有效地逃避了低能实验的限制,所以在各种动力学电弱对称破缺模型中,TC2 模型是一个非常诱人的理论.在电弱对称破缺标度,TC2模型预言了两类分别对应于人工色凝聚和顶色凝聚的标量粒子,其中我们感兴趣的粒子构成两个 SU(2)的二重态.它们在TC2模型里的作用类似于在文献[2]中的 Higgs场,所以 TC2 模型可以看成一种特别的双重态模型.尽管top夸克的许多奇异产生过程和稀有衰变模式都可以看作为探测 TC2 模型有效的途径,但是作为主要的衰变道,t→Wb 的作用是不可低估的.在实…  相似文献   

14.
虽然标准模型(SM)已被大量的精确实验所检验,但到目前为止,高能物理实验还未发现Higgs粒子,电弱对称性自发破缺(EWSB)机制还不清楚.电弱对称性自发破缺机制问题很可能涉及超出标准模型的新物理,并为最终解决质量起源问题提供线索,因此这个问题是当前粒子物理中最重要的问题之一,也是当前和未来的高能对撞机,尤其是强子对撞机的重要研究内容之一.在众多超出标准模型的新物理模型中,顶色辅助的人工色(TC2)模型[1~2]是一种较为理想的动力学破缺理论,目前与实验结果无明显不符,并解释了重夸克质量问题.TC2模型预言了新粒子的存在,如top-pi-…  相似文献   

15.
希格斯玻色子的发现揭示了基本粒子质量起源之谜,为粒子物理标准模型理论奠定关键基石.对希格斯场性质的深入研究将有助于理解电弱对称性破缺机制、暗物质、宇宙早期电弱相变、物质与反物质不对称等重大科学问题.  相似文献   

16.
描述电弱相互作用的电弱统一模型即Glashow-Weinberg-Salam( GWS)模型和描述强作用的量子色动力学(QCD)组成了粒子物理学中的标准模型(SM).迄今为止,它是大家普遍承认的最好的描述弱、电、强3种相互作用的理论,大量实验成功地验证了这一模型.但是,其电弱理论中为产生电弱对称性破缺而引入的Higgs粒子,至今仍未在高能物理实验中发现,电弱对称性破缺(EWSB)机制还不清楚.因此,人们认为:电弱对称性破缺机制问题很可能涉及超出标准模型的新物理,并为最终解决质量起源问题提供线索.这个问题是当前粒子物理中最重要的问题之一,也是当前和未来高能对撞机,尤其是强子对撞机的重要研究内容之一.  相似文献   

17.
描述电弱相互作用的电弱统一模型即Glashow-Weinberg-Salam(GWS)模型和描述强作用的量子色动力学(QCD)组成了粒子物理学中的标准模型(SM).迄今为止,它是大家普遍承认的最好的描述弱、电、强3种相互作用的理论,大量实验成功地验证了这一模型.但是,其电弱理论中为产生电弱对称性破缺而引入的Higgs粒子,至今仍未在高能物理实验中发现,电弱对称性破缺(EWSB)机制还不清楚.因此,人们认为:电弱对称性破缺机制问题很可能涉及超出标准模型的新物理,并为最终解决质量起源问题提供线索.这个问题是当前粒子物理中最重要的问题之一,也是当前和未来…  相似文献   

18.
希格斯场是标准模型中电弱对称性自发破缺的核心,通过与基本粒子的相互作用直接赋予质量,构建了粒子质量来源的机制.与希格斯相互作用的夸克质量本征态和参与弱相互作用的夸克味道本征态不重合使得不同代的夸克发生混合,即CKM机制,是目前唯一确定的CP破坏来源,但所提供的CP破坏远不足以解释宇宙正反物质不对称性.因此,在实验上对希格斯粒子和CKM矩阵进行精确测量以及寻找新的CP破坏来源是精确检验标准模型、寻找新物理的主要途径之一.正值希格斯粒子发现十周年,本文将介绍标准模型希格斯粒子以及味物理中CKM矩阵参数特别是相角测量在大型强子对撞机LHC实验上的最新进展,回顾北京大学高能物理研究团队在希格斯粒子及味物理实验方面的工作,献礼北京大学物理学科百十周年.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号