首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The inhibiting effect of Cytembena on HeLa cell kinetics has been demonstrated and analyzed. The percentage of cycling cells decreases, according to the concentration, between 7.5 and 2.5 x 10(-5) M. Estimation of DNA by cell flow cytophotometry shows an important shift in the distribution of cycling cells with a relative decrease of G1 cells and a very important accumulation of G2 cells. According to our experimental conditions, the blocking up in G2 is irreversible only at 7.5 x 10(-5) M.  相似文献   

2.
Summary Three polyamines tested (cadaverine, spermidine and spermine) and their 2 precursors (the amino acids arginine and ornithine) inhibit the Ca2+-mediated secretion of peroxidases by sugarbeet cells in suspension culture at concentrations ranging from 10–15 to 10–5M. In the absence of exogenous Ca2+, spermine added at higher concentrations mimics the activatory effect of Ca2+, the other polyamines being without effect.Supported by the Belgian FRFC (grant No. 2.9009.75 to T.G.) and the Swiss National Foundation for Scientific Research (grant No. 3.140-0.81 to C.P. and H.G.).  相似文献   

3.
Mechanism of HAb18G/CD147 underlying the metastasis process of human hepatoma cells has not been determined. In the present study, we found that integrin α3β1 colocalizes with HAb18G/CD147 in human 7721 hepatoma cells. The enhancing effect of HAb18G/CD147 on adhesion, invasion capacities and matrix metalloproteinases (MMPs) secretion was decreased by integrin α3β1 antibodies (p<0.01). The expressions of integrin downstream molecules including focal adhesion kinase (FAK), phospho-FAK (p-FAK), paxillin, and phospho-paxillin (p-paxillin) were increased in human hepatoma cells overexpressing HAb18G/CD147. Deletion of HAb18G/CD147 reduces the quantity of focal adhesions and rearranges cytoskeleton. Wortmannin and LY294002, specific phosphatidylinositol kinase (PI3K) inhibitors, reversed the effect of HAb18G/CD147 on the regulation of intracellular Ca2+ mobilization, significantly reducing cell adhesion, invasion and MMPs secretion potential (p<0.01). Together, these results suggest that HAb18G/CD147 enhances the invasion and metastatic potentials of human hepatoma cells via integrin α3β1-mediated FAK-paxillin and FAKPI3K-Ca2+ signal pathways. Received 5 June 2008; received after revision 16 July 2008; accepted 23 July 2008  相似文献   

4.
Summary Rat liver microsomal 3-hydroxy-3-methylgularyl CoA (HMG-CoA) reductase was activated by 50% at a concentration of 0.4 mM 2,3-diphosphoglyceric acid (DPG) and by 11-fold at 10 mM DPG. DPG also prevented the inactivation of HMG-CoA reductase by ATP and Mg++. Rat liver microsomal HMG-CoA reductase prepared in the presence of 1 mM DPG was significantly more active than when prepared in the absence of DPG. Activation of the enzyme by DPG and protection of the enzyme against inhibition by ATP and Mg++ by DPG were also observed with solubilized HMG-CoA reductase.This work was supported by Research Award # 697 G2-1 from the American Heart Association, Greater Los Angeles Affiliate, and by grant # 1R01 HL22672 from the National Institutes of Health. We thank M. Brun and M. Curtis for their excellent technical assistance.  相似文献   

5.
Phosphatidylinositol 3-kinase (PI3-kinase) activity has been implicated in regulating cell cycle progression at distinct points in the cell cycle by preventing cell cycle arrest or apoptosis. In this study, the role of PI3-kinase activity during the entire G1 phase of the ongoing cell cycle was studied in Chinese hamster ovary (CHO) cells synchronized by mitotic shake-off. We show that inhibition of PI3-kinase activity during and 2 h after mitosis inhibited cell cycle progression into S phase. In the presence of the PI3-kinase inhibitor wortmannin or LY294002, cells were arrested during early G1 phase, leading to the expression of the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PI3-kinase activity is required for progression through the M/G1 phase. In the absence of PI3-kinase activity, cells are induced for apoptosis in this particular phase of the cell cycle. Received 7 September 2005; received after revision 26 October 2005; accepted 11 November 2005  相似文献   

6.
T Kitao  K Hattori 《Experientia》1984,40(2):200-201
Five hybridomas secreting monoclonal antibody to E. coli L-asparaginase were isolated. These monoclonal antibodies were classified into 3 different subclasses; Ig G1 (1 clone), Ig G2 (2 clones) and Ig G3 (2 clones). One of them possessed anti-L-asparaginase neutralizing activity. Four antibodies examined demonstrated a linear Langmuir binding plot and binding affinities, with equilibrium dissociation constant (Kd) ranging between 2.5 X 10(-9) M and 6.3 X 10(-10) M. The monoclonal antibodies should be useful probes for investigation of the enzyme activity.  相似文献   

7.
Indole-3-carbinol (I3C) has been found to act against several types of cancer, while ultraviolet B (UVB) is known to induce the apoptosis of human melanoma cells. Here, we investigated whether I3C can sensitize G361 human melanoma cells to UVB-induced apoptosis. We examined the effects of combined I3C and UVB (I3C/UVB) at various dosages. I3C (200 μM)/UVB (50 mJ/cm2) synergistically reduced melanoma cell viability, whereas I3C (200 μM) or UVB (50 mJ/cm2), separately, had little effect on cell viability. DNA fragmentation assays indicated that I3C/UVB induced apoptosis. Further results show that I3C/UVB activates caspase-8, −3, and Bid and causes the cleavage of poly(ADP-ribose) polymerase. Moreover, I3C decreased the expression of the anti-apoptotic protein, Bcl-2, whereas UVB increased the translocation of Bax to mitochondria. Thus, an increased Bax/Bcl-2 ratio by I3C/UVB may result in melanoma apoptosis. In conclusion, our study demonstrated that I3C sensitizes human melanoma cells by down-regulating Bcl-2. Received 5 July 2006; received after revision 25 August 2006; accepted 11 September 2006  相似文献   

8.
Summary The effects of La3+ and ruthenium red on the energy-linked uptake of Ca2+ mediated by a synthetic neutral Ca2+ ionophore have been investigated in rat liver mitochondria. The results indicate that unspecific surface charge effects do not play a major role in the mechanism of inhibition of mitochondrial Ca2+ transport by La3+ and ruthenium red.Acknowledgments. The authors are indebted to Prof. W. Simon, ETH Zurich, for having provided samples of the synthetic neutral Ca2+ ligand, and to M. Mattenberger for the valuable technical assistence. The work was supported by a grant of the Swiss Nationalfonds (grant No. 3.1720.75).  相似文献   

9.
Electrophysiological experiments demonstrate that triiodothyronine (T3) exerts a direct effect on the membrane of a strain of cultured rat pituitary tumor cells, GH3/B6. These cells respond to pressure application of T3 (2-5 nl, concentration 1 X 10(-10) M) with an increase in the membrane resistance (Rm) and a hyperpolarization. Spontaneously firing cells become silent.  相似文献   

10.
The present communication deals with the isolation of acetyl salicylic acid (aspirin complexes with Bi+3 Zn+2 and UO2+2. The characterization of 1:2 complexes have been carried out with the help of conductometric, pH met;ric, elemental analysis and IR spectral studies. Spectrophotometric studies in case of UO2+2 (the only colored complex) in range of 4.2 to 5.5 pH show absorption at 490 nm and complex obey Beers Law at the concentration range of 0.01 M to 0.1 M.  相似文献   

11.
We recently identified two thiazolidin compounds, 5-[(4-methylphenyl)methylene]-2-(phenylamino)-4(5H)-thiazolone (MMPT) and 5-(2,4-dihydroxybenzylidene)-2-(phenylimino)-1,3-thiazolidin (DBPT), that inhibit the growth of human non-small-cell lung and colon cancer cells independent of P-glycoprotein and p53 status. Here we further investigated the mechanism by which these thiazolidin compounds mediate their anticancer effects. Treatment of cancer cells with MMPT and DBPT led to a time-dependent accumulation of cells arrested in the G2/M phase with modulation of the expression of proteins such as cyclin B1, cdc25C, and phosphorylated histone H3. Moreover, treatment with MMPT and DBPT increased M-phase arrest with abnormal spindle formation. DBPT-mediated G2/M phase arrest and phosphorylation of cdc25C and histone H3 were abrogated when JNK activation was blocked either with SP600125, a specific JNK inhibitor, or a dominant-negative JNK1 gene. Moreover, DBPT-mediated microtubule disruption was also blocked by SP600125 treatment. Our results demonstrate that thiazolidin compounds can effectively induce G2/M arrest in cancer cells and that this G2/M arrest requires JNK activation.  相似文献   

12.
Production and characterization of antibody against aflatoxin M1   总被引:5,自引:0,他引:5  
W O Harder  F S Chu 《Experientia》1979,35(8):1104-1107
Antibody against aflatoxin M1 was obtained after immunization of rabbits with bovine serum albumin-afla M1 oxime conjugate. The antibody has greatest binding efficiency for afla M1, and was less efficient for afla B1. Cross-reaction of antibody with aflatoxin Q1, aflatoxicol, and aflatoxin B2a was weak. Aflatoxin B2, G1, and G2 and afla B1-guanine adducts showed almost no cross-reaction with the antibody. The sensitivity of the binding assay for aflatoxin M1 detection is in the range of 1-10 ng per assay. Detailed methods for the preparation of the conjugate, production of immune serum, and methods for antibody determination are described.  相似文献   

13.
Currently, chemical bifunctional cross-linkers are regarded as promising therapeutic agents capable of affecting cell metabolism. Depending on the nature of the active groups and on the length of their mediating spacer, these cross-linkers have been shown to influence mitochondrial functions, the cell cycle and cell death. The current study was aimed to assay cellular effects of a cross-linker with ‘zero’-length spacer, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). When added to cultures of transformed cells, EDC induced a G2/M blockade followed by cell death. Analysis of the molecular targets revealed that alteration of the cell cycle was caused by EDC-induced interchain cross-linking within double-stranded DNA. Administration of EDC to animals with experimental tumors increased their life span. The analysis of tumor cells from EDC-treated mice showed up-regulation of p21/WAF1, disturbance of tumor cell cytokinesis and, hence, cell death. Thus, both in vitro and in vivo, EDC exhibits cytotoxic activity, which may be of potential therapeutic use. Received 15 August 2005; received after revision 23 September 2005; accepted 15 November 2005  相似文献   

14.
15.
MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.  相似文献   

16.
Resumé Les rapports G+C des ADN deCoprinus lagopus etMucor azygospora ont été étudiés. Le profil de fusion indique que l'ADN duC. lagopus est composé de deux fractions, une principale (90%) de rapport G+C 52 moles pourcent, une mineure (10%) de G+C 32 moles pourcent. Par contre l'ADN deM. azygospora contient une fraction unique de G+C 38 moles pourcent. L'étude de la cinétique de réassociation DNA:DNA montre que la dimension génomique («genome size») deC. lagopus est de 2×1012 et qu'il y a moin de 10% de DNA à séquences répétées de nucléotides.

This research was supported in part by the U.S. Atomic Energy Commission Contract No. AT (40-1) 4182 and the Research Corporation, New York, to S.K.D. We are grateful to ProfessorG. Turian, University of Geneva, for making possibleM. Ojha's participation in this research.  相似文献   

17.
18.
Activation-induced deoxycytidine deaminase (AID) and Apobec 3G (Apo3G) cause mutational diversity by initiating mutations on regions of single-stranded (ss) DNA. Expressed in B cells, AID deaminates C → U in actively transcribed immunoglobulin (Ig) variable and switch regions to initiate the somatic hypermutation (SHM) and class switch recombination (CSR) that are essential for antibody diversity. Apo3G expressed in T cells catalyzes C deaminations on reverse transcribed cDNA causing HIV-1 retroviral inactivation. When operating properly, AID- and Apo3G-initiated mutations boost human fitness. Yet, both enzymes are potentially powerful somatic cell “mutators”. Loss of regulated expression and proper genome targeting can cause human cancer. Here, we review well-established biological roles of AID and Apo3G. We provide a synopsis of AID partnering proteins during SHM and CSR, and describe how an Apo2 crystal structure provides “surrogate” insight for AID and Apo3G biochemical behavior. However, large gaps remain in our understanding of how dC deaminases search ssDNA to identify trinucleotide motifs to deaminate. We discuss two recent methods to analyze ssDNA scanning and deamination. Apo3G scanning and deamination is visualized in real-time using single-molecule FRET, and AID deamination efficiencies are determined with a random walk analysis. AID and Apo3G encounter many candidate deamination sites while scanning ssDNA. Generating mutational diversity is a principal aim of AID and an important ancillary property of Apo3G. Success seems likely to involve hit and miss deamination motif targeting, biased strongly toward miss.  相似文献   

19.
HAb18G/CD147 is a heavily glycosylated protein containing two immunoglobulin superfamily domains. Our previous studies have indicated that overexpression of HAb18G/CD147 enhances metastatic potentials in human hepatoma cells by disrupting the regulation of store-operated Ca2+ entry by nitric oxide (NO)/cGMP. In the present study, we investigated the structure-function of HAb18G/CD147 by transfecting truncated HAb18G/CD147 fragments into human 7721 hepatoma cells. The inhibitory effect of HAb18G/CD147 on 8-bromo-cGMP-regulated thapsigargin-induced Ca2+ entry was reversed by the expression of either C or N terminus truncated HAb18G/CD147 in T7721C and T7721N cells, respectively. The potential effect of HAb18G/CD147 on metastatic potentials, both adhesion and invasion capacities, of hepatoma cells was abolished in T7721C cells, but not affected in T7721N cells. Release and activation of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were found to be enhanced by the expression of HAb18G/CD147, and this effect was abolished by both truncations. Thapsigargin significantly enhanced release and activation of MMPs (MMP-2 and MMP-9) in non-transfected 7721 cells, and this effect was negatively regulated by SNAP. However, no effects of thapsigargin or SNAP were observed in T7721 cells, and expression of HAb18G/CD147 enhanced secretion and activation of MMPs at a stable and high level. Taken together, these results suggest that both ectodomain and intracellular domains of HAb18G/CD147 are required to mediate the effect of HAb18G/CD147 on the secretion and activation of MMPs and metastasis-related processes in human hepatoma cells by disrupting the regulation of NO/cGMP-sensitive intracellular Ca2+ mobilization although each domain may play different roles.Received 1 April 2004; received after revision 15 June 2004; accepted 22 June 2004  相似文献   

20.
Summary Electrophysiological experiments demonstrate that triiodothyronine (T3) exerts a direct effect on the membrane of a strain of cultured rat pituitary tumor cells, GH3/B6. These cells respond to pressure application of T3 (2–5 nl, concentration 1·10–10 M) with an increase in the membrane resistance (Rm) and a hyperpolarization. Spontaneously firing cells become silent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号