首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
交叉立方体CQn和交换交叉立方体ECQ(s,t)是计算机系统里常用的2个拓扑结构.CQn中系统地移除了一些边后,获得了交换交叉立方体ECQ(s,t).在ECQ(s,t)的基础上增加了一些边,就获得了一个新的互连网络交换折叠交叉立方体EFCQ(s,t).连通度和超连通度是衡量互连网络可靠性和容错性的2个重要参数.证明了EFCQ(s,t)的连通度和超连通度分别等于其最小度和最小边度.  相似文献   

2.
限制性连通度作为评估互联网络容错性的最佳参数之一,在多处理器系统中对可靠性计算起着重要作用.给定一个连通图G=(V,E)和一个非负整数h,子集F?V(G)(F?E(G))(如果存在)称为h-限制点割(h-限制边割),如果G-F不连通,并且G-F中的每个连通分支至少有h+1个顶点,其中最小的h-限制点割(h-限制边割)的...  相似文献   

3.
P.K.K.Loh等人从超立方体Qn中系统地移除了一些边后获得了交换超立方体EH(s,t)。李等人在EH(s,t)的基础上增加了一些边获得了一个新的互联网络交换折叠超立方体EH(s,t)。连通度是衡量网络容错性的一个重要参数,并且连通度越大网络越可靠。本文证明了EH(s,t)的连通度等于其最小度。  相似文献   

4.
折叠超立方体是最受关注的网络模型之一.设e是图G的一条边, 如果从图G中删掉以e为中心的双星子图,则称e"倒戈".设S为一个边集, 如果S中的边全部倒戈, 若剩下的子图或者不连通, 或者是一个孤立点, 或者是空集, 则称S为G的割边策略.G的最小割边策略所含的边数为边邻域连通度.该文主要证明了折叠超立方体FQn的边邻域连通度为n.  相似文献   

5.
g-外边连通度是衡量大型互连网络可靠性和容错性的一个重要参数.设G是连通图且g是非负整数,如果G中存在某种边子集使得G删除这种边子集后得到的图不连通并且每个分支至少有g+1个点,则所有这种边子集中基数最小的边子集的基数称为图G的g-外边连通度,记作λg(G).由定义可知λ0(G)=λ(G)并且λ1(G)是图G的超边连通度.n维折叠交叉立方体FCQn是由交叉立方体CQn增加2n-1条边后所得.证明了λ2(FCQn)=3n-1,n≥5.  相似文献   

6.
设图G是一个连通图,S⊆V(G)。图G的一棵S-斯坦纳树是一棵包含S中所有顶点的树T=(V ',E '),使得S⊆V '。如果连接S的两棵斯坦纳树T和T ',满足E(T)∩E(T ')=且V(T)∩V(T ')=S,则称T和T '是内部不交的。定义κ(S)为图G中内部不相交S-斯坦纳树的最大数目。广义k-连通度(2≤k≤n)定义为κk(G)=min{κ(S)|S⊆V(G)且|S|=k},显然,κ2(G)=κ(G)。证明了κ3(FQn)=n,其中FQn是n-维折叠超立方体。  相似文献   

7.
有各种各样的方法去衡量不同网络的可靠性和容错性.一个连通图G的g-额外连通度Kg(g-额外边连通度λg)是顶点数最小的顶点集S(边数最少的边集S),使得G-S不连通,并且剩下的每个连通分支含有的顶点数至少是g+1.探究n-维折叠交叉超立方体FCQn的2-额外连通度和2-额外边连通度,证明得到如下结论:当n≥8时,κ2(...  相似文献   

8.
利用2-外连通度作为评价可靠性的重要度量,对交换折叠超立方体网络EFH(s,t)的可靠性进行分析,得到了交换折叠超立方体网络的2-外连通度.证明了EFH(s,t)的2-外连通度等于3s+1(5≤s≤t).这个结果意味着,为了使EFH(s,t)不连通且每个分支都至少包含3个顶点,至少有3s+1个点要同时发生故障.  相似文献   

9.
为更好地研究网络拓扑性质,以超立方体为研究对象,使用收缩法给出了超立方体群连通的一个上界,拓展了已有文献中的结果。  相似文献   

10.
诊断度是多处理器系统互连网络能够诊断的最大故障结点的个数,它是度量多处理器系统故障诊断能力的一个重要参数.2012年,Peng等提出了一种新的诊断方法g-好邻诊断度,它要求每个非故障顶点至少有g个非故障邻点.n-维折叠交叉立方体网络FCQn是由交叉立方体网络CQn增加2n-1条边后所得.该文利用1-好邻诊断度作为评价可靠性的重要度量,对折叠交叉立方体网络的可靠性进行分析,得到折叠交叉立方体网络的1-好邻诊断度.证明了在PMC模型与MM*模型下FCQn的1-好邻诊断度分别等于2n+1,n≥5和2n+1,n≥6.  相似文献   

11.
通过分析折叠超立方体的结构,得到了折叠超立方体的谱及其Laplace矩阵的谱.  相似文献   

12.
g-额外边连通度是衡量大型互连网络可靠性和容错性的一个重要参数.设G是连通图且g是非负整数,如果G中存在某种边子集使得G删除这种边子集后得到的图不连通,且每个分支至少有g+1个点,则所有这种边子集中基数最小的边子集的基数称为图G的g-额外边连通度,记作λg(G).由定义可知,λ0(G)=λ(G)且λ1(G)是图G的超边...  相似文献   

13.
主要证明了当n≥4时,增广立方体AQn的3-分支连通度是4n-6,以及当n≥9时,增广立方体AQn的4-分支连通度是6n-12.  相似文献   

14.
证明了在至多具有2n-3条故障边的n维(n≥3)折叠超立方体网络中,如果每个顶点至少与两条非故障边相邻,则存在一个不含故障边的哈密顿圈.这个界是最好的.  相似文献   

15.
给出了在超立方体与交叉立方体的顶点之间的一种连接——交叉连接,从而得到一种称为HC-立方体的新型网络,证明了HC-立方体不仅保持了超立方体和交叉立方体的低顶点度数和高连通度的优点,而且其直径至多比交叉立方体大2的性质;它克服了超立方体对圈模拟能力的不足。由于这种网络同时包含了超立方体和交叉立方体作为子网络,因此它既能实现超立方体的功能,又能实现交叉立方体的功能。  相似文献   

16.
作为超立方体网络的变形, n维变形超立方体VQ_n是Cheng和Chuang于1994年提出来的,它具有许多超立方体所具有的优良性质, 比如正则性和递归结构.证明了:VQ_n 的连通度和边连通度都等于n,限制连通度和限制边连通度都等于2n-2. 这个结果意味着,为了使VQ_n不连通且不含孤立点, 至少有2n-2个点或者边要同时发生故障.  相似文献   

17.
研究了一类重要的互连网络拓扑结构折叠超立方体网络Qfn的反馈数.设F为Qfn的反馈集,通过构造剩余子图G[V(Qfn)-F]的极大无圈子图得到极小反馈集,从而得到反馈数的上界,用此方法研究折叠超立方体网络Qfn的反馈数问题.根据n维折叠超立方体网络的性质,提出一种新的方法构造无圈子图,改进了已有的”维折叠超立方体网络的反馈数的上界.结果表明,当n为奇数时构造的Qfn+z的无圈导出子图的整体连通性能与已有结论中构造的Q中无圈导出子图R∪Qfon是一致的.  相似文献   

18.
作为超立方体Qn的变型,在点数和边数都相同的情况下,交叉超立方体CQn有比超立方体更好的性质.在已获证明的CQn包含所有长度(从4到2^n)的圈的基础上,进一步改进了这一结果,证明了CQn中每条边落在所有长度(从4到2^n)的圈中.  相似文献   

19.
为提高系统故障诊断的诊断度,Somani 和Peleg提出了t/k诊断故障策略. n维折叠超立方体网络是具有2n个顶点,(n+1)2n-1条边的(n+1)-维正则图,它是n维超立方体网络增加2n-1补边得到的.中证明了当n≥6和1≤k≤n+1时n维超立方体网络是t/k可诊断的,其中t=(k+1)(n+1)-1/2(k+1)(k+2)+1.  相似文献   

20.
新型并行计算系统的研制依赖于对新型互连网络结构及其性质的研究.超立方体及其变型——Mbius立方体两者都具有优点,也具有缺点.本文给出了在超立方体与Mbius立方体的顶点之间的一种连接,从而得到一种称为HMm-立方体的新型网络,证明了HMn-立方体不仅保持了超立方体和Mbius立方体的低顶点度数和高连通度以及其直径至多比Mbius立方体大2的性质,而且它克服了超立方体对圈模拟能力的不足.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号