首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文将生物素(Biotin)修饰于Fe3O4磁性纳米粒子表面制备了BIO-MNPs纳米材料。盐酸阿霉素(DOX)可以通过与生物素之间的氢键作用和自聚集作用负载于BIO-MNPs表面,实验条件下的最大负载量可达823.6 mg/g,且BIO-MNPs@DOX对DOX的释放在弱酸性环境下更优。体外溶血实验以及细胞毒性实验证明BIO-MNPs具有良好的血液相容性和较低的生物毒性;体外细胞摄取实验证明BIO-MNPs@DOX对肝癌细胞和人乳腺癌细胞具有较好的靶向性能,且具有良好的抑制效果。以上结果表明BIO-MNPs可作为药物载体负载抗癌药物DOX,且BIOMNPs@DOX在癌细胞的靶向抑制方面具有一定的应用价值。  相似文献   

2.
采用水相共沉淀法,以没食子酸作为还原剂,还原Ag[(NH3)2]+,制备出核壳结构的Fe3O4/Ag磁性纳米颗粒.研究了该磁性纳米颗粒对于对硝基苯甲醛还原反应的催化性能,研究结果显示:在40℃,纳米颗粒浓度为0.08%时,反应的收率可接近97%.同时使用过的纳米颗粒可较为方便地从反应液中分离,经多次循环使用后,催化性能没有明显下降.  相似文献   

3.
首先通过共沉淀法制备Fe3O4磁粒子,然后采用水热法制备Fe3O4/Bi2O3复合粒子,并利用X-射线衍射、X-光电子能谱、扫描电子显微镜等进行表征。结果表明,复合粒子由Fe3O4和Bi2O3组成,形貌呈球形,具有三维多级结构。在可见光照射下,所制备的复合粒子对罗丹明B的降解率达95.2%。降解完成后,在外界磁场的作用下,Fe3O4/Bi2O3很快从体系中分离,可进行重复利用,实现循环催化。实验发现,Fe3O4/Bi2O3经5次循环催化后,对罗丹明B的降解率仍达93%以上。  相似文献   

4.
采用溶剂热法合成了分散性良好的Fe3O4粒子,然后将油酸修饰到Fe3O4粒子表面,再通过疏水作用进行十六烷基三甲基氯化铵(CTAC)包覆,得到Fe3O4@CTAC粒子。采用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)、Zeta电位和振动样品磁强计(VSM)对Fe3O4@CTAC粒子进行了表征,结果表明:Fe3O4粒子表面包覆CTAC后粒径无明显变化,并且仍保持良好的单分散性;Fe3O4@CTAC粒子具有超顺磁性和良好的磁响应性能;Fe3O4@CTAC粒子的Zeta电位较高,分散体系具有较好的稳定性。对Fe3O4@CTAC粒子进行了抗菌性能及磁分离去除菌体测试,结果显示:当Fe3O...  相似文献   

5.
通过溶剂热法,以FeOOH作为前驱体,以油酸作为表面活性剂,以十八烯为溶剂,制备了纳米Fe3O4颗粒,研究了油酸和FeCl3用量、反应时间对纳米Fe3O4粒子的大小以及分散性的影响.结果显示,FeCl3用量的增加和反应时间的延长均可使Fe3O4粒子粒径增大,油酸用量的增加会导致Fe3O4粒子粒径先减小再增大.利用XRD、TEM等手段对所制备颗粒的结构、形貌进行了表征,结果表明,所制备的纳米Fe3O4粒子属于反尖晶石结构.FeCl3用量为0.003mol,油酸用量为13.5mL时(即Fe3+/油酸约为1/15),在230℃反应12h得到结晶度较高,分散性良好,平均粒径比较小的纳米Fe3O4粒子.  相似文献   

6.
通过化学氧化沉淀法制备出球形和八面体形貌的Fe3O4纳米颗粒,对其进行XRD、Raman和SEM等表征。以合成的纳米Fe3O4催化H2O2氧化降解橙黄Ⅱ,考察了不同形貌Fe3O4的类Fenton催化活性。结果表明:使用化学氧化沉淀法制备Fe3O4,在低pH(8~9)条件下所得到的产物呈类球形,高pH(13)条件得到的产物为八面体形貌,其粒径均在210nm左右,并且结晶良好。Fe3O4/H2O2体系能有效降解橙黄II,并且催化反应主要发生在Fe3O4表面,最佳催化条件为pH 3.0、温度40℃。类球形Fe3O4纳米颗粒的催化活性高于八面体Fe3O4,并且Fe3O4具有良好的化学稳定性,重复使用4次效果稳定。  相似文献   

7.
为了制备具有纳米多孔结构的磁性复合微球,采用正硅酸四乙酯(TEOS)和金属氯盐分别作为SiO2和铁氧体的前驱体,通过溶胶凝胶法制备将Fe3O4纳米颗粒分散于SiO2基体中的Fe3O4/SiO2磁性纳米复合微球,并用超临界干燥法对其进行干燥。利用X线衍射(XRD)、红外光谱(IR)、透射电镜(TEM)和振动试样磁场计(VSM)等分析测试手段对合成的材料进行性能表征。结果表明:复合粒子包覆完好、性能优良、分散性良好,制备颗粒的粒径为30 nm,比饱和磁化强度为84.09 A.m2/kg。  相似文献   

8.
水热法制备Fe_3O_4磁性纳米粒子   总被引:2,自引:0,他引:2  
通过改进实验工艺,调节前驱体配比,采用水热法制备Fe3O4磁性纳米粒子,有效克服了Fe3O4粒子制备过程中普遍存在的氧化问题;并利用XRD、SEM以及TEM测试分析磁粒子的组成和结构,证实所制得的磁粒子为纯相Fe3O4纳米粒子;利用激光粒度分析仪表征分析,得出本实验产物大部分为纳米级粒子,粒径较窄;由交流梯度磁强计测得产物的磁化曲线,可确定产物有较理想的超顺磁性 .  相似文献   

9.
使用动态反应釜制备得到磁性粒子,与静态反应釜相比单次制备量提高20倍;通过扫描电子显微镜(SEM)、傅立叶红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对产物进行表征,证明获得了粒径200 nm左右的单分散Fe3O4粒子,并具有超顺磁性;对其表面进行SiO2包覆,获得具有良好分散性的Fe3O4@SiO2粒子。研究发现Fe3O4@SiO2对DNA提取具有可重复利用性,并且质粒DNA吸附到Fe3O4@SiO2上后可直接加入聚合酶链式反应(PCR)体系作为扩增模板。  相似文献   

10.
在1,2-丙二醇溶剂中,以FeSO4·7H2O和KOH为原料,200℃水热法反应24h,合成了Fe3O4立方体.通过对反应温度、KOH浓度、1,2-丙二醇比例对产物形貌影响,研究了KOH在Fe3O4立方体的形成过程中的作用,并提出了可能的生长机理.运用扫描电镜和X射线衍射对其颗粒结构进行表征.结果表明,Fe3O4立方体为单晶面心立方相结构,尺寸大约为1μm.  相似文献   

11.
以FeSO44@7H 2O(AR),Fe(NO3)3@9H2O(AR),NH3@H2O(AR)为原料,用水热法制备纳米Fe3O44粒子;通过选用合适的分散剂来克服磁性颗粒的沉降,采用超声波分散的方法,制备在重力场和磁场中稳定性好的磁流体.研究了影响水基FeaO4磁流体性能的主要因素,得到最佳条件Fe(NO3)3@9H2O和FeSO4@7H2O的量比为1.75,水热反应温度为160℃,反应时间为5 h,1.5 g Fe3O4分散于100 mL水中所需分散剂的用量为0.75 mL.所制备的产物经XRD和粒度仪检测,结果表明产物为单一相的Fe3O44,水基Fe3O4磁流体体系的粒径在100nm以下.  相似文献   

12.
以垃圾渗滤液膜滤浓缩液混沉出水为研究对象,制备硅藻土负载纳米Fe3O4作为催化剂催化臭氧处理浓缩液.考察溶液初始pH值、臭氧体积流量和催化剂投加量对处理效率的影响.结果表明:在溶液初始pH值为7,臭氧体积流量为1.0 L·min-1,催化剂投加量为0.8 g·L-1,反应时间为90 min时,化学需氧量(COD)和UV254去除率分别为67.8%和86.3%.对进出水进行三维荧光光谱(3D-EEM)和气相色谱-质谱联用(GC-MS)分析的结果表明:经催化臭氧氧化处理以后,浓缩液中的腐殖酸、富里酸和色氨酸等难降解物质大幅度减少;烷烃类、酚类和杂环类物质质量分数下降,烷烃类衍生物质量分数上升;硅藻土负载纳米Fe3O4催化臭氧对于浓缩液有着较好的处理效果.  相似文献   

13.
采用化学共沉淀法制备了纳米级Fe3O4磁性粒子,以油酸钠改性后的磁性Fe3O4粒子作为模板,以一次性聚乳酸(PLA)饭盒作为聚乳酸原料,采用溶剂扩散法制备了磁性PLA-Fe3O4复合微球.利用扫描电镜、红外光谱仪及热重分析仪对所得产物的形貌、组成和含量进行了表征.以茜素红(AR)模拟染料废水,探讨了磁性PLA-Fe3O4复合微球对染料茜素红的脱除效率,研究了吸附时间,磁性PLA-Fe3O4复合微球的用量,溶液的pH及溶液的初始浓度等因素对茜素红脱除效率的影响.结果表明:磁性PLA-Fe3O4复合微球的用量为25mg、pH为4.3、吸附时间为2h、溶液起始浓度为19mg/L时吸附率可达90%以上.  相似文献   

14.
为制备硅油基Fe3O4磁流体,采用化学共沉淀法制备平均粒径为11 nm纳米Fe3O4颗粒,利用透射电子显微镜(TEM)、选区电子衍射花样(SAED)、X线衍射分析(XRD)、振动磁强计(VSM)等手段对试样的微观形貌、晶体结构以及磁性能进行表征。在测得无水乙醇中Fe3O4粉体的pH-Zeta电位图基础之上,研究了表面活性剂的类型、表面活性剂的加入量以及超声分散的时间对纳米Fe3O4颗粒分散性能的影响。结果表明:化学共沉淀法制备出的纳米Fe3O4颗粒为面心立方结构,颗粒表面光洁且呈现规则的圆球形,粉体的粒径分布较窄。随着超声时间的延长和表面活性剂使用量的增加,纳米Fe3O4颗粒在无水乙醇中的分散效果在特定点呈现最佳效果之后逐步变差,5种表面活性剂分散效果由好到差的顺序是:聚乙烯吡咯烷酮(PVP)、司班-80(SPAN-80)、司班-85(SPAN-85)、油酸(OA)、硅烷偶联剂KH-550。推荐纳米Fe3O4颗粒在无水乙醇中的分散工艺为:pH=7,PVP加入的质量分数3%,超声时间35 min,超声功率560 W。  相似文献   

15.
考察了Fe3O4/纳米级Fe0对污染水中Cr(Ⅵ)的去除效果,以及Fe3O4投加量、腐殖酸投加量、温度对Fe3O4/纳米级Fe0去除水中Cr(Ⅵ)的影响。结果表明:Fe3O4/纳米级Fe0对水中Cr(Ⅵ)的去除效果很好,在2 min时Cr(Ⅵ)的去除率就能够达到91.4%;这个值比纳米级Fe0单独作用120 min时对Cr(Ⅵ)的去除率还要高。Fe3O4与纳米级Fe0的配比为7.5:1时,Fe3O4/纳米级Fe0对Cr(Ⅵ)的去除效果最好。温度的升高加速了Fe3O4/纳米级Fe0对水中Cr(Ⅵ)还原降解反应的进行。  相似文献   

16.
以葡萄糖为碳源,以聚乙烯吡咯烷酮(PVP)为表面活性剂,在碱性条件下用水合肼还原氯化铁,采用两步水热法制备Fe3O4/C磁性纳米粒子,并采用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)对产物进行表征。结果表明:产物为碳包覆纳米四氧化三铁核壳结构,其直径为300~600 nm,晶化程度较高。  相似文献   

17.
表面包覆惰性层是解决四氧化三铁(Fe3O4)粒子团聚、易氧化、亲水性差等问题的一种有效方法,但惰性层的引入一般会导致包覆后样品磁性能下降,从而限制了Fe3O4的应用.以正硅酸乙酯(TEOS)和氨水为原料,制备了具有良好磁响应性的Fe3O4/SiO2核壳结构.样品的结构、形貌、尺寸和表面吸附官能团采用X-ray粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和红外光谱(FTIR)等测试手段进行了表征.研究发现,TEOS加入方式影响SiO2层生长过程,从而影响包覆的均匀程度.Fe3O4/SiO2核壳结构表现出顺磁性和良好的磁响应性(52emu/g).  相似文献   

18.
首先采用工艺较为简单的溶剂热法制备Fe3O4材料,对其进一步修饰后可得到Fe3O4/GO复合材料,最后通过化学共沉淀法制备得到具有磁性的纳米材料Fe3O4/GO/ZnO,并将该材料用于盐酸土霉素的吸附研究中。考察了盐酸土霉素的起始浓度、pH以及吸附剂的用量等因素对盐酸土霉素吸附效果的影响,还考察了纳米材料的再生循环次数及最大吸附量。结果表明:盐酸土霉素起始浓度为18 mg/L,pH值为3,材料用量为0.003 2 g等最佳条件下,该材料的最大吸附量达到191.93 mg/g,前再生3次吸附量保持在150 mg/g左右,故制备的Fe3O4/GO/ZnO磁性纳米材料对盐酸土霉素具有较好的吸附能力和稳定性。  相似文献   

19.
Fe3O4@SiO2磁性纳米粒子的制备及表征   总被引:2,自引:0,他引:2  
用多元醇还原法制备出平均粒径为6.0 nm的Fe3O4磁性纳米粒子,并用盐酸溶液(1 mol/L)对其进行酸化处理,然后利用反相微乳液法,在Op-10/正丁醇/环己烷/浓氨水反相微乳体系中制备出Fe3O4@SiO2磁性纳米复合粒子.利用X射线衍射(XRD)仪,透射电子显微镜(TEM),傅立叶-红外光谱仪(FT-IR)和...  相似文献   

20.
包头钢铁厂的平炉尘含铁量高,粒径微细,并以γ-Fe2O3为主,经过提纯分级可以作为生产超细磁性材料的原料.利用同晶型间的拓扑转化原理,在有Fe2+离子存在及避免氧化的条件下,将平炉尘转化为超细尖晶石型铁酸盐Fe3O4.并和离子反应对比,对其反应条件进行了研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号