首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
采用固相反应法制备了Nd:YAG透明陶瓷,并通过碳铵沉淀法处理Y_2O_3商业原料,进一步提高了Nd:YAG透明陶瓷的透明度. 结果表明:采用高纯的商业原料,通过固相法制备获得的透明陶瓷,在1 064 nm处光线直线透过率可达到74%左右;通过碳铵共沉淀法改良商业Y_2O_3粉体原料的性能,透明陶瓷的透过率可进一步提升,在1 064 nm处光线直线透过率高达78%.  相似文献   

2.
采用传统无压烧结工艺在氢气氛下制备透明氧化铝陶瓷.结果表明,适量氧化镁和镁铝尖晶石都能有效改善Al2O3陶瓷烧结性能,适当延长保温时间有利于样品体积密度的增加,但是掺杂微量氧化镁更有利于透过率的提高.采用体视学方法首次预测了透明氧化铝陶瓷透过率的相对高低,预测的结果和实际测得的透过率相对高低一致.  相似文献   

3.
在0.36 BiScO3-0.64 PbTiO_3(BSPT64)系压电陶瓷中,掺入适量稀土元素氧化物(Tm_2O_3、Sm_2O_3),采用固相烧结工艺制备出性能得到改善的高居里温度压电陶瓷.XRD图谱表明少量稀土掺杂不影响材料晶体结构,SEM图样表明稀土掺杂对晶粒尺寸有影响,Tm2O3和Sm2O3可促进晶粒生长,提高材料致密度.适量的稀土氧化物掺杂可调节陶瓷性能,当掺入Sm2O3的质量分数达到0.100%时,材料的相对介电常数εT33/ε0=2 199;当掺入Tm2O3的质量分数达到0.075%时,压电应变常数d33=480 p C/N.  相似文献   

4.
以铋硅酸盐玻璃(SiO_2-Bi2O_3-BaF_2-AlPO_4)为基质,通过掺杂Ho~(3+)、Tm~(3+)、Yb~(3+)稀土离子,制备激光波长为2μm的光纤激光器。对玻璃的声子能量、物理和光学性能进行了研究,确定基质配方为50SiO_2-40Bi_2O_3-5BaF_2-5AlPO_4(SBBA,其中化学式前的系数为对应物质的摩尔分数,下同)。在玻璃基质中分别掺杂0.5Ho_2O_3-2.0Yb_2O_3(HY)、0.5Ho_2O_3-0.5Tm_2O_3-2.0Yb_2O_3(0.5HTY)及0.75Ho_2O_3-0.75Tm_2O_3-3.0Yb_2O_3(0.75HTY),研究了980nm激发波长下样品的吸收、发射光谱和Judd-Oflet理论光谱参数。研究发现SBBA-0.75HTY中Ho~(3+)的吸收截面、发射截面(σem)、FWHM(半峰宽)×σem数值最大,分别为7.38×10~(-21)、10.54×10~(-21) cm~2和19.71×10~(-26) cm~3。掺入Tm_2O_3改善了玻璃激光器性能,且当Yb~(3+)/Tm~(3+)/Ho~(3+)物质的量之比一定时,增加稀土离子含量,可加强红外发光及增益效果。  相似文献   

5.
以硝酸盐和蔗糖为原料,利用低温燃烧合成制备纳米镁铝尖晶石(MgAl_2O_4)粉体,研究了不同煅烧温度、气氛以及加热速率等因素对纳米MgAl_2O_4粉体特性的影响.结果表明:随着前驱体煅烧温度的升高,纳米MgAl_2O_4晶粒尺寸逐渐增大;在O2环境中煅烧前驱体可以降低纯MgAl_2O_4相的形成温度,促进反应物质扩散、增大晶粒尺寸.在快速升温、蔗糖与硝酸盐物质的量比为2∶1以及通入O2的条件下,在400℃下煅烧生成MgAl_2O_4相,700℃时得到单相MgAl_2O_4纳米粉体.低温燃烧合成制备纳米MgAl_2O_4粉体结晶度高、晶粒尺寸细小,呈松散的软团聚态,有利于降低MgAl_2O_4陶瓷致密化烧结温度.  相似文献   

6.
采用溶胶凝胶法,合成YF_3/Y_2O_3:Yb~(3+),Er~(3+),Tm~(3+)样品.通过TEM,XRD,Raman及荧光分光光度计对样品的形貌、物相及上转换发光进行表征.结果表明,在980nm激光激发下,Y_2O_3:Yb~(3+),Er~(3+),Tm~(3+)样品在Tm~(3+)掺杂浓度较低时,因Y_2O_3基质具有较大的声子能量,能够实现白色上转换发光.Y_2O_3:Yb~(3+),Er~(3+),Tm~(3+)纳米粒子有望在白色激光器、白色荧光粉及生物医学荧光标记等方面发挥更大的作用.  相似文献   

7.
文章采用超声波共振法合成了不同掺杂量、不同煅烧温度的Er3+、Gd3+共掺杂的纳米TiO2光催化剂,并对所制样品进行XRD、FT-IR、SEM表征;通过降解孔雀石绿溶液来测试样品的光催化性能。结果表明:稀土Er3+、Gd3+共掺杂能抑制TiO2晶粒长大,细化晶粒;稀土掺杂后样品能吸附更多的羟基,羟基自由基具有很强的氧化性,从而提高催化活性;在500℃下煅烧,Er3+-Gd3+的摩尔分数为5%的催化剂,加入0.5mL30%的双氧水后,降低基元反应活化能,有很强的氧化性,能抑制电子-空穴的复合,无灯源照射、常温常压不需通氧条件下的催化时间为80min,降解率达到100%。  相似文献   

8.
Y2O3掺杂对WO3压敏非线性及介电性能的影响   总被引:1,自引:0,他引:1  
在Y2O3掺杂量(摩尔分数)为0.2%~2%的范围内研究了Y2O3掺杂对WO3的非线性伏安特性及介电性能的影响.实验结果表明:随Y2O3掺杂量的增加,样品的非线性系数先增大后减小,在Y2O3掺杂量为0.8%附近达到最大值(3.61);样品的介电常数(在1kHz频率下测量)也是先增大后减小,其最大值(1.16×104)出现在Y2O3摩尔分数为1.2%附近的样品中.测量了各样品的阻抗频率依赖关系,并由此估算了不同Y2O3含量样品的晶粒电阻,利用德拜弛豫关系式解释了Y2O3掺杂引起WO3介电常数与晶粒电阻变化的关系.Y2O3掺杂的WO3陶瓷是一种新型的压敏电容材料.  相似文献   

9.
为了提高钛酸锶基陶瓷的介电常数,采用固相反应法,制备了掺杂CeO2的SrTiO3陶瓷,研究了CeO2的掺杂量及真空烧结温度对所制陶瓷的介电常数的影响.结果表明:掺杂CeO2后SrTiO3基陶瓷的相对介电常数由105量级巨增至1011,当CeO2掺杂量为摩尔分数O.5%时,样品的介电常数为最大.XRD及SEM分析表明,C...  相似文献   

10.
以Y2O3、OAl(NO3)3·9H2O和Nd(NO3)3·6H2O为原料,采用尿素均匀沉淀法制备不同Nd掺杂量的YAG前驱体沉淀,经CO2 超临界流体干燥得Nd:YAG前驱体,煅烧后得到Nd:YAG粉体;将粉体干压成型为素坯,经冷等静压后真空烧结获得性能良好的Nd:YAG透明陶瓷。用FT-IR、XRD、SEM等测试手段对Nd:YAG前驱体及粉体进行分析,并通过紫外-可见-近红外分光光度计、SEM测定表征了陶瓷样品的直线透过率及表面和断口形貌。结果表明,1300℃煅烧的Nd:YAG粉体均为纯YAG相,颗粒呈椭球形,分散性良好,尺寸分布均匀;粉体成型后在1780~1800℃真空烧结得到透明陶瓷,Nd摩尔分数为1%的YAG陶瓷样品晶粒尺寸分布为5~10μm,抛光后1064nm波长处直线透过率达80%。  相似文献   

11.
用溶胶-凝胶浸渍提拉法在普通玻璃片上制备了纳米Ce-Al共掺杂ZnO(Ce-AZO)透明薄膜,并研究了Ce-AZO薄膜的光学性能.结果表明:Ce-AZO薄膜在可见光区的平均透过率均在85%以上;Al和Ce掺杂摩尔分数分别为4%和2%、pH 7.1、退火温度450℃时,Ce-AZO薄膜在可见光区500~700 nm的透过率达到92%,在紫外区300~350 nm平均透过率只有2%.  相似文献   

12.
采用固相反应法制备W掺杂Li_7La_3Zr_2O_(12)(Li_(7-2x)La_3Zr_(2-x)W_xO_(12))陶瓷电解质,探究掺杂量及烧结温度对样品烧结特性、晶体结构、显微形貌及离子电导率的影响。结果表明:W掺杂可以稳定立方相Li_(7-2x)La_3Zr_(2-x)W_xO_(12),当x=0.3时,1 200℃烧结20 h制备的样品30℃下离子电导率达到最高值5.77×10~(-4) S/cm,相较于未掺杂样品提高一个数量级;以x=0.3为固定掺杂量、改变不同烧结温度,1 180℃烧结20 h获得的样品离子电导率达到最高为7.05×10~(-4) S/cm。当x=0.1~0.3时,晶粒尺寸分布均匀,在10~20μm左右;当x=0.4时,产生晶粒熔合现象且有晶体析出,这种特殊的显微形貌导致样品电性能劣化。  相似文献   

13.
通过高温固相法合成了Ho~(3+)-Yb~(3+)共掺杂La_2O_3上转换荧光粉.在980、1 064以及800 nm 3种不同波长的激光激发下,样品产生了明显的上转换荧光.利用980 nm的激光作为激发源,在Ho~(3+)掺杂量为0.5%的条件下,研究了Yb~(3+)掺杂量的变化对样品上转换荧光强度的影响.研究结果表明:Yb~(3+)掺杂浓度为10%样品产生的上转换荧光最强,相比未掺Yb~(3+)的样品,绿光强度提高了65倍,对样品的上转换发光机理进行了详细的研究.  相似文献   

14.
用浸渍-焙烧法制备不同质量分数Y_2O_3的Pt/Y_2O_3-WO_3-ZrO_2催化剂。通过X线衍射(XRD)、N2物理吸附-脱附、CO脉冲吸附、NH_3程序升温脱附(NH_3-TPD)和H_2程序升温还原(H_2-TPR)等方法表征催化剂的理化性能。用连续流动固定床反应器评价催化剂催化四氢糠醇选择加氢制备1,5-戊二醇的催化性能。结果表明:掺杂Y_2O_3可改变催化剂的晶相结构、酸量、比表面积、还原性能和分散度,从而影响催化剂催化四氢糠醇加氢制备1,5-戊二醇的反应性能。Y_2O_3质量分数为1. 0%的Pt/Y_2O_3-WO_3-ZrO_2催化剂活性达到88. 0%,1,5-戊二醇的收率为68. 0%。  相似文献   

15.
以玻璃为基底,采用射频磁控溅射法制备了Al_2O_3、SiO_2、氧化石墨烯(GNP)共掺杂氧化锌(GASZO)透明导电薄膜.考察了在Ar(流量不变)中H_2流量对薄膜制备的影响.采用X射线衍射仪(XRD)及扫描电子显微镜(SEM)等对薄膜形貌、结构进行了表征.结果表明薄膜晶相为纤锌矿结构、呈c轴择优取向; Scherrer公式计算发现增加H_2量,可以减小薄膜的平均晶粒尺寸; H_2流量对薄膜内应力影响较大.此外,还采用四探针测试仪、紫外—可见分光光度计(UV-Vis)等对薄膜的光电性能进行了表征.当Ar流量为70 sccm、H_2占溅射气氛1. 00%时,薄膜具有最低电阻率7. 746×10~(-4)Ω·cm;适量的H_2流量可以提高玻璃在近紫外区的透过率;镀膜后样品在可见光区的平均透过率为90%左右.  相似文献   

16.
研究了氧化钇(Y_2O_3)添加量对氧化锆陶瓷组织和性能的影响,重点探讨了高能球磨工艺和Y_2O_3添加量对氧化锆晶粒度、组织结构和力学性能的影响.结果表明:通过高能球磨可降低ZrO_2,Y_2O_3混合粉末的颗粒度,达到细化氧化锆陶瓷晶粒度的目的,提升氧化锆陶瓷的力学性能;适量加入Y_2O_3,采用常规的烧结工艺可以获得维氏硬度为1 128 kg/mm~2和断裂韧性为10.03 MPa·m~(1/2)的细晶粒3Y-ZrO_2氧化锆陶瓷.  相似文献   

17.
采用溶胶-凝胶法制备了Fe~(3+)掺杂TiO_2粉体和薄膜,通过X射线衍射仪分析了Fe~(3+)掺杂TiO_2的微观结构,采用紫外可见近红外分光光度计表征了Fe~(3+)掺杂TiO_2的光学性质。结果表明:Fe~(3+)掺杂TiO_2为锐钛矿结构,随Fe~(3+)离子浓度的增加,TiO_2晶化减弱,晶粒尺寸减小。掺杂前后TiO_2薄膜在波长400 nm到1100 nm之间,透过率在65%以上,在310 nm到380 nm之间,透过率急剧减小;当Fe~(3+)摩尔含量为3%时,TiO_2的吸光度最大,禁带宽度最小。  相似文献   

18.
采用无压烧结工艺制备了Nb_2O_5掺杂SrTiO_3陶瓷,研究了Nb_2O_5掺杂量对SrTiO_3陶瓷相组成、显微结构和微波介电损耗的影响。结果表明:Nb_2O_5掺杂对SrTiO_3陶瓷的相结构没有产生明显的影响,但会在一定程度上阻碍样品的致密化,同时促进晶粒的生长。随着Nb_2O_5掺杂量的增加,SrTiO_3陶瓷的介电常数从296逐渐下降至230左右,温度系数从1.714×10-3℃-1逐渐下降至1.629×10~(-3)℃-1,Q×f值则先急剧升高,之后又慢慢下降。当Nb_2O_5掺杂量为0.15%(质量分数,下同)时,SrTiO_3陶瓷样品的介电损耗最低,Q×f可达6 281GHz,大约是纯SrTiO_3(1 145GHz)陶瓷样品的5.5倍(此时介电常数约为270,温度系数约为1.684×10~(-3)℃~(-1))。此外,对材料显微结构、介电常数、温度系数特别是介电损耗变化的原因进行了分析。  相似文献   

19.
采用高温固相法制备了不同摩尔分数H3BO3的红色长余辉材料Ca0.77Zn0.2Na0.03Ti0.97Nb0.03O3:Pr3+0.002,利用X晶体衍射、发光光谱、余辉曲线和热释光曲线对制备的样品进行表征。结果表明:掺杂不同摩尔分数的H3BO3并没有改变样品的主晶相;当H3BO3的摩尔分数为0.07时,样品的发光光谱强度达到最大,继续增大掺杂量,样品的发光光谱强度开始减弱;当H3BO3的摩尔分数为0.07时,样品的余辉性能达到最强,余辉时间为21min,此时对应的陷阱深度为0.68eV。  相似文献   

20.
采用溶胶-凝胶法制备了系列近红外发光材料Y_(1.98-x)Yb_xEu_(0.02)O_3(其中x=0,0.01,0.02,0.04,0.06,0.10),并采用X射线衍射仪(XRD)、荧光光谱(PL)等测试方法、技术对样品的物相结构和发光特性进行了表征及测试.结果表明:Eu~(3+)和Yb~(3+)掺杂的荧光粉中,Eu~(3+)和Yb~(3+)部分取代了Y~(3+),并占据其晶格位置,而对Y_2O_3的立方相晶体结构未产生显著影响;在466 nm波长(Eu~(3+)的特征激发峰)激发下,在可见光区及近红外光区可观察到较强的发射光谱,其中,Y_(1.94)Yb_(0.04)~(3+)Eu_(0.02)~(3+)O_3在近红外光区发光效率最高.采用溶胶-凝胶法制备出Eu~(3+)和Yb~(3+)掺杂的新型荧光材料,可将硅太阳能电池吸收较弱的高能光子转换成吸收较好的近红外光子,可有效解决太阳光谱与硅太阳能电池光电响应之间存在的光谱失配问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号