首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
J Saklatvala 《Nature》1986,322(6079):547-549
During inflammatory reactions, activated leukocytes are thought to produce a variety of small proteins (cytokines) that influence the behaviour of other cells (including other leukocytes). Of these substances, which include the interleukins, interferons and tumour necrosis factors (TNFs), interleukin-1 (IL-1) has been considered potentially a most important inflammatory mediator because of its wide range of effects. In vivo it is pyrogenic and promotes the acute phase response; in vitro it activates lymphocytes and stimulates resorption of cartilage and bone. Cartilage resorption is a major feature of inflammatory diseases such as rheumatoid arthritis, and IL-1 is the only cytokine hitherto known to promote it. TNFs are characterized by their effects on tumours and cytotoxicity to transformed cells, but share some actions with IL-1. I report here that recombinant human TNF alpha stimulates resorption and inhibits synthesis of proteoglycan in explants of cartilage. Its action is similar to and additive with IL-1, and it is a second macrophage-derived cytokine whose production in rheumatoid arthritis, or inflammation generally, could contribute to tissue destruction.  相似文献   

2.
K H Plate  G Breier  H A Weich  W Risau 《Nature》1992,359(6398):845-848
Clinical and experimental studies suggest that angiogenesis is a prerequisite for solid tumour growth. Several growth factors with mitogenic or chemotactic activity for endothelial cells in vitro have been described, but it is not known whether these mediate tumour vascularization in vivo. Glioblastoma, the most common and most malignant brain tumour in humans, is distinguished from astrocytoma by the presence of necroses and vascular proliferations. Here we show that expression of an endothelial cell-specific mitogen, vascular endothelial growth factor (VEGF), is induced in astrocytoma cells but is dramatically upregulated in two apparently different subsets of glioblastoma cells. The high-affinity tyrosine kinase receptor for VEGF, flt, although not expressed in normal brain endothelium, is upregulated in tumour endothelial cells in vivo. These observations strongly support the concept that tumour angiogenesis is regulated by paracrine mechanisms and identify VEGF as a potential tumour angiogenesis factor in vivo.  相似文献   

3.
利用微波辐射处理五水四氯化锡溶胶制备出活性二氧化锡,小试研究活性二氧化锡催化合成乙酰水杨酸.并研究了酯化反应的优化条件,结果表明微波辐射法制备的二氧化锡呈现出较高的催化活性和选择性,其催化合成乙酰水杨酸产率比以浓硫酸为催化剂的产率高,也明显高于一般普通二氧化锡催化产率;活性二氧化锡催化酯化反应的最佳时间为45min,最佳温度为85℃,乙酸酐与水杨酸的最佳物质的量比为21.活性二氧化锡催化剂安全无毒,克服了浓硫酸的强腐蚀性、强氧化性、难于与产品分离、对环境污染大等诸多缺点,因此,活性二氧化锡可望成为一种较好的能取代液体浓硫酸并对环境友好固体酸催化剂.  相似文献   

4.
利用水热法处理五水四氯化锡溶胶制备二氧化锡纳米粉,试验纳米二氧化锡纳米粉催化合成乙酰水杨酸的研究,并研究了酯化反应的优化条件,结果表明:纳米二氧化锡呈现出较高的催化活性,其催化合成乙酰水杨酸产率比以浓硫酸为催化剂的产率高,也明显高于普通的二氧化锡的产率,且纳米二氧化锡催化剂安全无毒,克服了浓硫酸的强腐蚀性、强氧化性、难于与产品分离、对环境污染大等缺点,纳米二氧化锡可望成为一种较好的能取代浓硫酸且对环境友好的催化剂。  相似文献   

5.
以N-甲基吗啉,氯磺酸为原料合成N-甲基-N-磺酸基吗啉盐酸盐的酸性离子液体,将其代替浓硫酸用于催化乙酸酐和水杨酸的酯化反应,合成阿司匹林。考察了原料配比、离子液体用量、反应温度、反应时间等因素对阿司匹林产率的影响,并通过正交实验确定最佳合成条件。结果表明该离子液体对阿司匹林的合成具有良好的催化效果,在水杨酸20mmol、乙酸酐40mmol、N-甲基-N-磺酸基吗啉盐酸盐离子液体3mL、反应温度70℃、反应时间30min的条件下,阿司匹林产率可达77.12%。  相似文献   

6.
Objective: To study the effects of the generation 4 polyamidoamine/vascular endothelial growth factor antisense oligodeoxynucleotide (G4PAMAM/VEGFASODN) compound on the expressions of vascular endothelial growth factor (VEGF) and its mRNA of breast cancer cells and on the inhibition of vascular endothelial cells. Methods: We examined the morphology of G4PAMAM/VEGFASODN compound and its pH stability, in vitro transfection efficiency and toxicity, and the expressions of VEGF and its mRNA. Methyl thiazolyl tetrazolium assay was used to detect the inhibitory function of the compound on vascular endothelial cells. Results: The compound was about 10 nm in diameter and was homogeneously netlike. From pH 5 to 10, it showed quite a buffered ability. The 48-h transfection rate in the charge ratio of 1:40 was 98.76%, significantly higher than that of the liposome group (P<0.05). None of the transfection products showed obvious toxicity on the cells. The expressions of both VEGF protein and its mRNA after G4PAMAM/VEGFASODN transfection decreased markedly. Conclusion: With a low toxicity, high safety, and high transfection rate, G4PAMAM/VEGFASODN could be a promising gene vector. Specifically, it inhibits VEGF gene expression efficiently, laying a basis for further in vivo animal studies.  相似文献   

7.
The motility and morphogenesis of endothelial cells is controlled by spatio-temporally regulated activation of integrin adhesion receptors, and integrin activation is stimulated by major determinants of vascular remodelling. In order for endothelial cells to be responsive to changes in activator gradients, the adhesiveness of these cells to the extracellular matrix must be dynamic, and negative regulators of integrins could be required. Here we show that during vascular development and experimental angiogenesis, endothelial cells generate autocrine chemorepulsive signals of class 3 semaphorins (SEMA3 proteins) that localize at nascent adhesive sites in spreading endothelial cells. Disrupting endogenous SEMA3 function in endothelial cells stimulates integrin-mediated adhesion and migration to extracellular matrices, whereas exogenous SEMA3 proteins antagonize integrin activation. Misexpression of dominant negative SEMA3 receptors in chick embryo endothelial cells locks integrins in an active conformation, and severely impairs vascular remodelling. Sema3a null mice show vascular defects as well. Thus during angiogenesis endothelial SEMA3 proteins endow the vascular system with the plasticity required for its reshaping by controlling integrin function.  相似文献   

8.
测定了小牛软骨血管生成抑制因子对血管内皮细胞细胞毒作用,对内皮细胞骨架系统及其运动迁移的抑制效应,对小鼠肿瘤生长的对抑制效应。  相似文献   

9.
WAVE2, a protein related to Wiskott-Aldrich syndrome protein, is crucial for Rac-induced membrane ruffling, which is important in cell motility. Cell movement is essential for morphogenesis, but it is unclear how cell movement is regulated or related to morphogenesis. Here we show the physiological functions of WAVE2 by disruption of the WAVE2 gene in mice. WAVE2 was expressed predominantly in vascular endothelial cells during embryogenesis. WAVE2-/- embryos showed haemorrhages and died at about embryonic day 10. Deficiency in WAVE2 had no significant effect on vasculogenesis, but it decreased sprouting and branching of endothelial cells from existing vessels during angiogenesis. In WAVE2-/- endothelial cells, cell polarity formed in response to vascular endothelial growth factor, but the formation of lamellipodia at leading edges and capillaries was severely impaired. These findings indicate that WAVE2-regulated actin reorganization might be required for proper cell movement and that a lack of functional WAVE2 impairs angiogenesis in vivo.  相似文献   

10.
J D Pearson  J L Gordon 《Nature》1979,281(5730):384-386
Endothelial cells in culture can modulate platelet aggregation and vascular tone, in part by producing prostacyclin (PGI2), a powerful vasodilator and inhibitor of platelet aggregation, but also by their ecto-ADPase activity, which initiates the conversion of pro-aggregating ADP to adenosine, a potent vasodilator and platelet inhibitor. We have now demonstrated that cultured aortic endothelial cells exposed to trypsin, thrombin or other stimuli can liberate a high proportion of their adenine nucleotides without substantial loss of lactate dehydrogenase. ADP rapidly accumulates extracellularly, reaching biologically active concentrations before there is further breakdown to adenosine. Whether this selective release of nucleotides is a response to damage, or whether it represents a specific secretory mechanism remains to be resolved. Cultured aortic smooth muscle cells can secrete adenine nucleotides in a similar manner, but extracellular conversion to adenosine occurs much faster.  相似文献   

11.
Glioblastoma stem-like cells give rise to tumour endothelium   总被引:2,自引:0,他引:2  
Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly defined. Here we demonstrate that a subpopulation of endothelial cells within glioblastomas harbour the same somatic mutations identified within tumour cells, such as amplification of EGFR and chromosome 7. We additionally demonstrate that the stem-cell-like CD133(+) fraction includes a subset of vascular endothelial-cadherin (CD144)-expressing cells that show characteristics of endothelial progenitors capable of maturation into endothelial cells. Extensive in vitro and in vivo lineage analyses, including single cell clonal studies, further show that a subpopulation of the CD133(+) stem-like cell fraction is multipotent and capable of differentiation along tumour and endothelial lineages, possibly via an intermediate CD133(+)/CD144(+) progenitor cell. The findings are supported by genetic studies of specific exons selected from The Cancer Genome Atlas, quantitative FISH and comparative genomic hybridization data that demonstrate identical genomic profiles in the CD133(+) tumour cells, their endothelial progenitor derivatives and mature endothelium. Exposure to the clinical anti-angiogenesis agent bevacizumab or to a γ-secretase inhibitor as well as knockdown shRNA studies demonstrate that blocking VEGF or silencing VEGFR2 inhibits the maturation of tumour endothelial progenitors into endothelium but not the differentiation of CD133(+) cells into endothelial progenitors, whereas γ-secretase inhibition or NOTCH1 silencing blocks the transition into endothelial progenitors. These data may provide new perspectives on the mechanisms of failure of anti-angiogenesis inhibitors currently in use. The lineage plasticity and capacity to generate tumour vasculature of the putative cancer stem cells within glioblastoma are novel findings that provide new insight into the biology of gliomas and the definition of cancer stemness, as well as the mechanisms of tumour neo-angiogenesis.  相似文献   

12.
Cloning and sequencing of the complementary DNA for platelet-derived endothelial cell growth factor indicates that it is a novel factor distinct from previously characterized proteins. The factor, a protein with a relative molecular mass of about 45,000, stimulates endothelial cell growth and chemotaxis in vitro and angiogenesis in vivo.  相似文献   

13.
人参汤提取物对血管内皮细胞保护作用的研究   总被引:1,自引:0,他引:1  
探讨人参汤提取物对血管内皮细胞的保护作用.采用体内、外血管内皮细胞损伤模型,测定体外血管内皮细胞破裂MTT染色后的OD值、体内血管内皮细胞损伤时血中CEC数及血清中NO的浓度.体外实验人参汤各剂量组的OD值比模型对照组降低(P<0.05)、体内实验人参汤各剂量组CEC数量、NO浓度比模型对照组都显著降低(P<0.01).实验结果表明,人参汤提取物对血管内皮细胞的损伤具有保护作用.  相似文献   

14.
R Munker  J Gasson  M Ogawa  H P Koeffler 《Nature》1986,323(6083):79-82
Tumor necrosis factor (TNF) is synthesized by macrophages exposed to endotoxin. It produces haemorrhagic necrosis of a variety of tumours in mice and is cytostatic or cytocidal against various transformed cell lines in vitro, but viability of normal human or rodent cells is unaffected. The role of TNF is unlikely to be restricted to the rejection of tumours. Colony-stimulating factors (CSFs) are required for survival, proliferation and differentiation of haematopoietic progenitor cells. The haematopoietic growth factor known as granulocyte-monocyte colony-stimulating factor (GM-CSF) has the ability to stimulate proliferation and differentiation of normal granulocyte-monocyte and eosinophil stem cells and enhance the proliferation of pluripotent, megakaryocyte and erythroid stem cells. In addition, GM-CSF stimulates a variety of functional activities in mature granulocytes and macrophages, for example inhibition of migration, phagocytosis of microbes, oxidative metabolism, and antibody-dependent cytotoxic killing of tumour cells. We show here that TNF markedly stimulates production of GM-CSF messenger RNA and protein in normal human lung fibroblasts and vascular endothelial cells, and in cells of several malignant tissues.  相似文献   

15.
16.
Developing tissues and growing tumours produce vascular endothelial growth factors (VEGFs), leading to the activation of the corresponding receptors in endothelial cells. The resultant angiogenic expansion of the local vasculature can promote physiological and pathological growth processes. Previous work has uncovered that the VEGF and Notch pathways are tightly linked. Signalling triggered by VEGF-A (also known as VEGF) has been shown to induce expression of the Notch ligand DLL4 in angiogenic vessels and, most prominently, in the tip of endothelial sprouts. DLL4 activates Notch in adjacent cells, which suppresses the expression of VEGF receptors and thereby restrains endothelial sprouting and proliferation. Here we show, by using inducible loss-of-function genetics in combination with inhibitors in vivo, that DLL4 protein expression in retinal tip cells is only weakly modulated by VEGFR2 signalling. Surprisingly, Notch inhibition also had no significant impact on VEGFR2 expression and induced deregulated endothelial sprouting and proliferation even in the absence of VEGFR2, which is the most important VEGF-A receptor and is considered to be indispensable for these processes. By contrast, VEGFR3, the main receptor for VEGF-C, was strongly modulated by Notch. VEGFR3 kinase-activity inhibitors but not ligand-blocking antibodies suppressed the sprouting of endothelial cells that had low Notch signalling activity. Our results establish that VEGFR2 and VEGFR3 are regulated in a highly differential manner by Notch. We propose that successful anti-angiogenic targeting of these receptors and their ligands will strongly depend on the status of endothelial Notch signalling.  相似文献   

17.
Animal cells can convert 20-carbon polyunsaturated fatty acids into prostaglandins (PGs) and leukotrienes. These locally produced mediators of inflammatory and immunological reactions act in an autocrine or paracrine fashion. Arachidonic acid (AA), the precursor of most PGs and leukotrienes, is present in the form of lipid esters within plasma lipoproteins and cannot be synthesised de novo by animal cells. Therefore, AA or its plant-derived precursor, linoleic acid, must be provided to cells if PGs or leukotrienes are to be formed. Because several classes of lipoproteins, including low-density lipoproteins (LDL), very-low-density lipoproteins, and chylomicron remnants, are taken up by means of the LDL receptor, and because LDL and very-low-density lipoproteins, but not high-density lipoproteins, stimulate PG synthesis, we have suggested previously that PG formation is directly linked to the LDL pathway. Using fibroblasts with the receptor-negative phenotype of familial hypercholesterolaemia and anti-LDL receptor antibodies, we show here that LDL deliver AA for PG production and that an LDL receptor-dependent feedback mechanism inhibits the activity of PGH synthase, the rate-limiting enzyme of PG synthesis. These results indicate that the LDL pathway has a regulatory role in PG synthesis, in addition to its well-known role in the maintenance of cellular cholesterol homeostasis.  相似文献   

18.
Induction of human vascular endothelial stress fibres by fluid shear stress   总被引:5,自引:0,他引:5  
Endothelial cells of the arterial vascular system and the heart contain straight actin filament bundles, of which there are few, if any, in the venous endothelium. Since stress fibre-containing endothelial cells within the vascular system tend to be located at sites exposed to particularly high shear stress of blood flow, we have investigated, in an experimental rheological system (Fig. 1), the response of the endothelial actin filament skeleton to controlled levels of fluid shear stress. Here we report that endothelial stress fibres can be induced by a 3-h exposure of confluent monolayer cultures of human vascular endothelium to a fluid shear stress of 2 dynes cm-2, approximately the stress occurring in human arteries in vivo. Fourfold lower levels of shear stress that normally occur only in veins, had no significant effect on the endothelial actin filament system. The formation of endothelial stress fibres in response to critical levels of fluid shear stress is probably a functionally important mechanism that protects the endothelium from hydrodynamic injury and detachment.  相似文献   

19.
Vascular endothelial cells synthesize nitric oxide from L-arginine   总被引:155,自引:0,他引:155  
R M Palmer  D S Ashton  S Moncada 《Nature》1988,333(6174):664-666
Nitric oxide (NO) released by vascular endothelial cells accounts for the relaxation of strips of vascular tissue and for the inhibition of platelet aggregation and platelet adhesion attributed to endothelium-derived relaxing factor. We now demonstrate that NO can be synthesized from L-arginine by porcine aortic endothelial cells in culture. Nitric oxide was detected by bioassay, chemiluminescence or by mass spectrometry. Release of NO from the endothelial cells induced by bradykinin and the calcium ionophore A23187 was reversibly enhanced by infusions of L-arginine and L-citrulline, but not D-arginine or other close structural analogues. Mass spectrometry studies using 15N-labelled L-arginine indicated that this enhancement was due to the formation of NO from the terminal guanidino nitrogen atom(s) of L-arginine. The strict substrate specificity of this reaction suggests that L-arginine is the precursor for NO synthesis in vascular endothelial cells.  相似文献   

20.
Shi Y  Evans JE  Rock KL 《Nature》2003,425(6957):516-521
In infections, microbial components provide signals that alert the immune system to danger and promote the generation of immunity. In the absence of such signals, there is often no immune response or tolerance may develop. This has led to the concept that the immune system responds only to antigens perceived to be associated with a dangerous situation such as infection. Danger signals are thought to act by stimulating dendritic cells to mature so that they can present foreign antigens and stimulate T lymphocytes. Dying mammalian cells have also been found to release danger signals of unknown identity. Here we show that uric acid is a principal endogenous danger signal released from injured cells. Uric acid stimulates dendritic cell maturation and, when co-injected with antigen in vivo, significantly enhances the generation of responses from CD8+ T cells. Eliminating uric acid in vivo inhibits the immune response to antigens associated with injured cells, but not to antigens presented by activated dendritic cells. Our findings provide a molecular link between cell injury and immunity and have important implications for vaccines, autoimmunity and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号