共查询到17条相似文献,搜索用时 82 毫秒
1.
2.
3.
中文文本分类技术比较研究 总被引:2,自引:0,他引:2
胡龙茂 《安庆师范学院学报(自然科学版)》2015,(2):49-53
文本分类中特征选择、权重计算及分类算法三个阶段中都存在一些经典方法,在实际的中文文本分类任务中,如何从各阶段不同方法的组合中找到一个好的组合成为值得研究的问题。比较研究中文文本分类中各阶段经典方法的不同组合对分类效果的影响结果表明:采用CHI特征选择方法、TFIDF权重计算方法及SVM分类方法的组合为最佳组合。 相似文献
4.
KNN文本分类算法中的特征选取方法研究 总被引:1,自引:0,他引:1
对基于中文的文本分类过程进行了介绍,重点介绍了文本分类中几种特征选取的方法,详细介绍了KNN分类算法,最后介绍了文本分类的评估方法并通过实验测试对比了几种特征选择的方法在基于KNN技术的文本分类中的使用效果. 相似文献
5.
陈将宏 《甘肃联合大学学报(自然科学版)》2009,23(6):67-69
讨论基于核方法的分类算法的原理及其用于统计建模的一般步骤,研究了支持向量机和核Fisher线性判别分类算法的性能,数值实验表明基于核的分类算法与传统分类算法相比具有高精度,自适应的优点. 相似文献
6.
基于关联规则的中文文本分类算法的改进 总被引:4,自引:1,他引:4
随着中文电子刊物和Web文档数量的飞速增加,中文文本自动分类工作变得日益重要.将文档视为事务,将关键词视为项,文本预处理时提出特征权重阈值,用构造的分类器对未知文档分类时,采用了CDD(Class Differen-tiate Degree)改进算法,对基于关联规则挖掘的中文文本自动分类方法进行了改进.实验结果表明,该算法能较快地获得可理解的规则并且具有较好的宏平均和微平均值. 相似文献
7.
为方便中文文本分类过程算法研究,阐述中文文本分类的基础技术,提出基于构件的中文文本分类技术研究辅助平台.该平台对大多数分类中使用的算法在中文文本分类中的应用效果进行了研究.实验结果表明: 该平台可以通过计算分类器分类准确率的宏平均值比较分类算法与特征选择算法的性能,可以评估语料库的可用性,能够用于研究中文分词、特征选择、分类算法等中文文本分类技术问题. 相似文献
8.
为了更加高效地对文本数据进行描述,提出将文本向量表示为统计流形上的点,并用核方法将文本的生成模型和判别模型结合起来.用DCM统计流形上扩散核来表示文本空间上的距离度量,提出DCM流形上的核近邻算法用于文本分类.实验结果表明,在两个实验语料库上基于DCM流形的核近邻算法的准确率和召回率优于对比算法或与对比算法相当. 相似文献
9.
提出了一种基于中文关键字符串核函数的分类算法,并在农业文本上进行了分类性能测试.实验结果表明,与传统的中文分类算法相比,基于中文关键字符串核函数的分类算法准确率更高. 相似文献
10.
应用特征聚合进行中文文本分类的改进KNN算法 总被引:14,自引:0,他引:14
针对以KNN为代表的VSM模型存在的向量各特征项孤立处理问题 ,提出了一种应用特征聚合方式的改进算法·该算法通过CHI概率统计计算文本特征词对分类的贡献 ,将对分类有相同贡献的文本特征词聚合 ,使用它们共同的分类贡献模式代替传统算法中单个词对应向量一维的方式·该算法提高了稀有词对分类的贡献、强化了关联词的分类效果、并降低了文本向量的维数·与传统KNN算法进行的对比实验证明 ,该算法明显提高了分类的准确率和召回率 相似文献
11.
基于改进分类模型的文本分类系统实现 总被引:1,自引:0,他引:1
吕佳 《重庆师范大学学报(自然科学版)》2009,26(2):79-83
提出一种基于改进的分类模型的文本分类系统来实现文本的自动分类.针对传统的特征提取算法不能很好区分特征词在类内和类间分布情况的缺陷,该系统利用方差对该算法作了改进,用改进的特征提取算法量化各个特征词的权重,为了降低特征向量的维数,采用为每个类建分类器的分类模型,利用遗传算法来修正各个类特征词的权重,直到为每个类训练出能够代表本类的特征向量,最后用这些类的特征向量进行分类.通过在同一数据集上进行对比实验,说明本文提出的改进分类模型的文本分类系统是正确可行的. 相似文献
12.
采用基因集的形式对传统遗传算法的编码方式进行改进,再引入模拟退火的思想,提出一种基于基因集编码的遗传退火算法的文本特征抽取方法(GSGAA),并与遗传算法(GA)和模拟退火GA算法(SA-GA)进行比较实验。结果表明,GSGAA算法用于文本分类的特征抽取所得出结果的正确率和执行时间都比采用单基因进行编码的GA算法和GA-SA算法好,具有一定的应用价值。 相似文献
13.
文本特征选择是自然语言处理中的关键问题。针对文本特征的高维性和稀疏性问题,在过滤式特征选择算法文档-逆文档评率(term frequency-inverse document frequency, TF-IDF)的基础上,提出了用遗传算法对文本特征进行优化选择,使其最大程度地贴合后续的文本分类算法,在保证文本分类精确度的同时,降低特征维度以缩减预测时间。实验显示,该算法与单一的过滤式文本特征选择算法相比,能够有效减少所选文本特征数量(即降低特征维度),能有效提高文本的分类能力。 相似文献
14.
主观文本观点识别是文本信息处理的一个重要研究方面,在产品推荐、智能信息检索、辅助决策等方面均具有重要的潜在应用价值.与连续的n元词的文本表示方法不同,间隔n元核能够提取主观文本中不规范不连续的特征.此外,间隔n元核的表示方法不需要进行词语依存关系分析和词语极性强度分级.在文本观点分类数据集和短评论数据集上的实验结果表明:与已有的观点分类方法相比,基于间隔n元核的方法有更高识别准确率;在不同特征数目下,增加间隔n元核特征均能够提高分类精度;间隔n元核是一种合适的主观文本特征表示方法. 相似文献
15.
提出并实现了一种结合BP神经网络和遗传算法的文本分类算法,根据遗传算法能够快速优化网络权重以及摆脱BP算法局部极点困扰的能力,提出一种改进的遗传算法确定网络拓扑结构和训练网络的方法.最后对设计的分类器进行了开放性测试,实验结果表明该分类器显著地提高了文本分类的查全率和查准率. 相似文献
16.
基于核函数的模糊C均值聚类算法 总被引:1,自引:0,他引:1
通过引入Mercer核,把输入空间的样本映射到高维特征空间,实现了对样本在特征空间的优化,使各类样本之间的差别增大,从而较好地实现了对差别微弱的样本类之间的聚类.仿真实验的结果证实了该方法的可行性和有效性. 相似文献
17.
文本分类特征选择是文本自动分类中首先要解决的重要问题。主要介绍了11种文本分类特征选择的方法,并选择其中的4种进行实验分析。实验结果说明:好的特征选择,对于提高文本分类的效率和效果至关重要。 相似文献