首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
给出用计算机代数系统 Mathematica 建立 Yang - Baxter 方程解的统一方法,此方法可用于具有动力 R- 矩阵的约束系统  相似文献   

2.
给出用计算机代数系统Mathematica建立约束系统的R矩阵的统一方法,并将其用于CB族和TG族的R矩阵  相似文献   

3.
设A∈Cn×n是群可逆矩阵,本文给出A是Hermite矩阵的性质刻画,即A是H矩阵当且仅当下列条件之一成立:i)矩阵方程XA~#=(A~#)HX(AA~#)H在■A中有解,其中■A={A,A~#,A+,AH,(A~#)H,(A+)H}; ii)矩阵方程XA~#=(A~#)HY(AA~#)H的一般解由■给出;iii)矩阵方程XAA~#=A~#(AA~#)HY(AA~#)HA的一般解由■给出.  相似文献   

4.
利用Hermite矩阵探讨了一类矩阵方程的求解问题,获得了一些新结果,导出了矩阵方程XAX=A与X*AX=A存在Hermite矩阵解的充分必要条件及其通解表达式,削弱了杨昌兰和王龙波文中定理的条件,推广了Jameson和杨昌兰等的结果.  相似文献   

5.
给出了复数域上矩阵函数方程f(X)=A有解的充要条件, 其中 A∈C n×n ,f(x) 为复值函数.进一步给出可以用A的多项式来表示方程的解的充要条件.  相似文献   

6.
对于任意给定的矩阵C∈Cq×n,A∈Cm×n,B∈Cm×p,利用QQ-SVD分解给出了矩阵方程A=BXC的一个通解公式.利用这个通解公式,还给出了解集合中解的最大秩和最小秩.  相似文献   

7.
本文应用分块矩阵的等价标准形,讨论了线性矩阵方程AmxnXnxn=Bmxn有非奇异解充分必要条件,并给出了一般解。  相似文献   

8.
利用准Frobenius矩阵求得线性递推方程的解,n阶常数线性差分方程的显式解可视为该文特例,并给出一个实例。  相似文献   

9.
齐次线性矩阵方程AX=XB和非齐次线性矩阵方程AX-XB=C是矩阵论中的重要问题,用初等方法解决了这两类问题并给出解的表达式.  相似文献   

10.
在矩阵的向量函数和矩阵的Kronecker积的基础上定义了矩阵的部分向量函数,利用Moore-Penrose的有关知识给出了矩阵方程的Hankel矩阵解的结构和性质.  相似文献   

11.
本文给出了矩阵方程AXB存在解和对称解的充要条件及通解的显式表示.  相似文献   

12.
应用广义三次矩阵的Jordan标准形, 给出AX=A+X有广义三次矩阵解的充要条件及解的形式, 并证明由AX=A+X的广 义三次矩阵解B所确定的绝对值方程Bx-|x|=b有解.  相似文献   

13.
为解决与毕达哥拉斯方程x2+y2=z2相关的整数矩阵方程问题, 利用矩阵的基本运算把整数矩阵方程问题转化成不定方程求解的问题, 从特殊情形逐步推广到一般情形, 研究了与毕达哥拉斯方程相关的一类二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} + {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $ ($\lambda \in \mathbb{Z}, \boldsymbol{I} $为单位矩阵), 并得到其全部解( X , Y ), 类似可得二阶整数矩阵方程${\mathit{\boldsymbol{X}}^2} - {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} $的全部解.  相似文献   

14.
首先在A=(aij)m×n为满列秩梯形形状Fuzzy数矩阵,b=(b1,b2,…,bm)T为梯形形状Fuzzy数向量的条件下给出了矩阵方程Ax=b的解。然后深入地研究了矩阵方程Ax=b的解的性质,并给出了求解算法。  相似文献   

15.
一类带有矩阵不等式约束的Lyapunov方程在确定控制系统的反馈增益阵时扮演着关键的角色.从两方面探讨了Lyapunov方程的性质:即从矩阵迹的角度给出该方程成立的条件和从矩阵特征值的角度进一步讨论了相应的性质  相似文献   

16.
通过广义奇异值分解定理,得到了矩阵方程AHXA=B的反Hermite-自反解存在的一个充要条件,并导出了这个矩阵方程的与已知矩阵最佳逼近的反Hermite-自反解,最后相应地获得了方程的最小范数解.  相似文献   

17.
如果一个(0.l)g-循环矩阵的阶为ckm,行和为ck且其 Hall多项式被Tc(x)Tc(xcn)……Tc(xc(k-1)m)整除,其中m,k为正整数.c为大于1的整数,Tc(x)=1=x=……x(c-2),则它满足方程Am=J,称之为这个方程的(c,k)-型解。本文用归纳法给出了某些(c,x)一型解的构造,并通过计算(c,k)-型解的秩.证明了方程Am=J的不同型的解是不同构。最后,证明了方程Am=J的所有(c,1)-型解部是同构的.  相似文献   

18.
实数域上矩阵函数方程的解   总被引:1,自引:0,他引:1  
在f(x)为一般解析函数时,讨论了矩阵函数方程f(X)=A在实数域上有解的充要条件,并由此给出了方程求解的方法步骤。  相似文献   

19.
20.
利用广义逆矩阵给出矩阵方程AXB=D有对称解的充要条件以及对称解的通式.该通解表为方程的一个对称特解及AXB=O的对称通解之和.当B=I时得到方程AX=D的对称通解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号