首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
研究了天然色素叶绿素铜钠作为染料敏化太阳能电池的敏化剂。通过吸收光谱,红外光谱,I-V特性对天然染料叶绿素铜钠进行分析。此外,应用密度泛函理论和含时密度泛函理论对染料分子激发态计算与探究。染料的敏化太阳能电池中的光电转换率η=0.07%,开路电压VOC=0.44V,短路电流密度JSC=0.33 m A cm-2,填充因子ff=0.48,叶绿素铜钠在溶液中的电子驱动力要高于真空为-2.63e V。  相似文献   

2.
文章采用水热/溶剂热法分别合成一维ZnO纳米线阵列及均匀SnO2纳米颗粒,再通过旋涂法合成了ZnO纳米线/SnO2纳米颗粒核壳复合纳米结构。在染料敏化太阳能电池(DSSCs)中,与单一结构的ZnO纳米阵列或SnO2纳米颗粒光阳极相比,所合成的新型复合纳米结构的光阳极能有效地提高光电性能,短路电流、开路电压及转化效率分别为2.93mA/cm2、0.64V、0.74%。入射光光电转换效率(IPCE)、强度调制光电流谱(IMPS)及强度调制光电压谱(IMVS)的测试结果表明:SnO2纳米颗粒包裹层能增加比表面积,有利于染料的吸附;能有效地抑制ZnO与电解液界面的电子复合,提高了电子寿命。  相似文献   

3.
本文利用类胡萝卜素分别于叶绿素和花青素共敏,通过对共敏化染料的可见吸收光谱测试和共敏化太阳能电池的光电性能测试,实验结果证明:这种共敏化的方法可以在可见光范围内有效提高电池的吸光度,使得电池的性能有大幅度提高,在模拟太阳光下,当花青素与类胡萝卜素的摩尔比为3∶1时得到电池的光电效率最佳,其开路电压为469 mV,短路电流为0.359mA/cm2。  相似文献   

4.
采用超声波破碎结合蔗糖密度梯度离心的方法从钝顶螺旋藻中分离出纯度较高的完整藻胆体,探讨了具有超大分子结构的藻胆体作为染料敏化太阳能电池(DSSC)敏化荆的可行性,考察了藻胆体与Chlorin e6在纳米TiO2电极上的耦合敏化作用.研究发现,藻胆体可以组装在纳米TiO2电极上作为DSSC的敏化剂,藻胆体DSSC的开路电压0.55 V,短路电流0.50 mA/cm2,光电转化效率0.19%;藻胆体与Chlorin e6耦合敏化可以增大DSSC的短路电流,提高光电转化效率,且高于藻胆体和Chlorin e6单独敏化的加和,表现出明显的耦合效应,为进一步探讨光合膜蛋白在光电材料中的应用奠定了基础.  相似文献   

5.
TiO_2纳米管薄膜的制备及其光电性能研究   总被引:1,自引:0,他引:1  
将水热法制备的TiO2纳米管在600℃下焙烧,用焙烧产物制备染料敏化太阳能电池中的薄膜电极,同时与未焙烧的TiO2纳米管制备的薄膜电极进行光电性能比较。结果表明,600℃焙烧纳米管产物制备的薄膜电极短路电流和开路电压分别达到17.45mA/cm2和0.60V,光电转化效率提高到5.65%,高于未焙烧的TiO2纳米管制备的薄膜电极相应值,且机械性能良好,不易剥落。  相似文献   

6.
以纯柠檬酸为碳源,分别使用十六胺(HAD)和4,7,10-三氧-1,13-十三烷二胺作为碳量子点表面钝化剂,采用一步合成法合成油溶性及水溶性2种碳量子点,以此为染料制备出染料敏化太阳能电池,研究了其光电性能和电化学阻抗谱.该电池采用光阳极-电解质-光阴极(对电极)结构.光阳极采用TiO2纳米颗粒多孔薄膜结构,电解质为常用I-/I3-电解质体系,光阴极为Pt薄膜电极.测试结果表明:在AM 1.5G标准太阳光照下,油溶性碳量子点敏化太阳能电池的短路光电流为0.515 mA/cm2,开路光电压为0.461 V,填充因子为63.17%,转化效率为0.15%;水溶性碳量子点敏化太阳能电池的短路光电流为0.598 mA/cm2,开路光电压为0.549 V,填充因子为65.59%,转化效率为0.22%.数值均优于已报道的文献.  相似文献   

7.
使用丝网印刷法制备了阳极膜厚为22.5μm的大面积ZnO染料敏化太阳能电池(ZnO-DSC),活性面积18.24cm2。在ZnO浆料中添加乙酸可以提高阳极薄膜的染料吸附量,添加乙酸后染料吸附量由1.867×10-7mol/cm2增至2.832×10-7mol/cm2。在ZnO薄膜表面引入超薄TiO2保护层提高了ZnO薄膜与导电玻璃基底的粘接力。将上述两种方法同时应用于制备ZnO-DSC,光伏性能测试结果表明,制得的DSC短路电流和开路电压分别提高至11.95mA/cm2和0.69V,电池的光电转化效率由未经任何处理时的2.56%提高到3.47%。  相似文献   

8.
目的研究天然染料敏化太阳能电池的光电性能并降低其生产成本,提高染料敏化太阳能电池的制作效率.方法采用一种有效的天然染料的提取与纯化方法,从不同种类的植物中提取了十一种天然染料,包括蔬菜、水果、茶叶等,组装成天然染料敏化太阳能电池,并检测其光电性能,最后对各个天然染料敏化太阳能电池的光电性能进行分析.本实验还采用了静电喷镀的技术,将染料喷镀到工作电极上,并将采用静电喷镀技术得到的结果与传统浸泡的方法相比较.结果采用蓝莓制备的染料作为光敏剂敏化的太阳能电池在所研究的十一种染料中表现出最好的光电性能,其光电转化效率达到1.11%.结论这种静电喷镀技术不仅提高了染料敏化太阳能电池的制作效率,从检测结果看,染料的吸光度也大大提高,为染料敏化太阳能电池光电转化效率的提高以及未来染料敏化太阳能电池的商业化发展奠定了基础.  相似文献   

9.
对电极是染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)的重要组成部分,将PDDA(poly dimethyl diallyl ammonium chloride)功能化的碳纳米管的复合材料PDDA/CNTs(carbon nanotubes)用作对电极,取代传统的高成本Pt对电极可降低成本。文章用滴加法将复合材料水溶液滴加到导电玻璃基底FTO(fluorine-doped tin oxide)上,制备成对电极薄膜;分析了PDDA/CNTs对电极电池的光电性能及其主要影响因素以及电池的稳定性。该文最优化的电池光电转换效率η和单色光光电转换效率(IPCE)分别达到5.65%和61.6%,相对于纯CNTs对电极组装的电池,其光学性能明显提高。分析结果表明,PDDA/CNTs复合材料是DSSCs中Pt对电极较好的替代品。  相似文献   

10.
全固态染料敏化纳米二氧化钛/铜酞菁复合太阳能电池   总被引:1,自引:0,他引:1  
利用铜酞菁空穴传输材料制备了全固态染料敏化纳米TiO2太阳能电池.研究了铜酞菁厚度对电池性能的影响,结构优化后,得到的性能参数,开路电压约为618 mV,短路电流约为0.24 mA/cm2(氙灯照射,光强约为80 mW/cm2),注入因子为54.5%,总光电转换效率为0.1%.对铜酞菁层进行碘掺杂后,电池的短路电流得到了提高,而开路电压有所下降.电池暗反应研究表明,电流的升高是由于碘掺杂导致载流子浓度增大,载流子输运能力增强,电压的下降则是由于碘的掺入削弱了电池的整流特性.  相似文献   

11.
通过水热-垂直沉积法制备了一种新型的荧光光子晶体薄膜,得到的荧光光子晶体具有鲜艳的色彩和良好的荧光性能.此薄膜在460 nm处有明显的反射峰,在440 nm处有很强的荧光峰.将此荧光光子晶体薄膜作为染料敏化太阳能电池背反射层时,可以将开路电压由0.75 V提高到0.77 V,短路电流由7.64 m A/cm2提高到8 m A/cm2,光电转换效率由4.13%提高到4.23%,可以提高2.42%的光电转换效率.  相似文献   

12.
目的为了提高染料敏化太阳能电池的光电转化效率,优化染料制备太阳能薄膜工艺,实现Ti O2薄膜的自动喷镀加工.方法采用新型静电喷镀方法代替传统的浸泡方式将敏化染料喷镀到二氧化钛工作电极上,染料脱附后进行UV-Vis光谱的测试,并组装成染料敏化太阳能电池,检测其光电性能.结果用静电喷镀方法喷镀的染料吸光度都好于浸泡法,且喷镀40次染料的吸光度最高.喷镀法制备的电池的光电性能也高于浸泡方法得到的电池的光电性能,并且随着喷镀次数的增加光电性能也越来越好,40次的光电转化率为3.26%.结论静电喷镀技术在一定程度上优化了染料敏化太阳能电池的制备工艺,不但增大了染料的吸附量同时也节省了染料敏化电极的时间,从而提高了电池的效率.  相似文献   

13.
利用铜酞菁空穴传输材料制备了全固态染料敏化纳米TiO2太阳能电池。研究了铜酞菁厚度对电池性能的影响,结构优化后,得到的性能参数,开路电压约为618mV,短路电流约为0.24mA/cm^2(氙灯照射,光强约为80mW/cm^2),注入因子为54.5%,总光电转换效率为0.1%。对铜酞菁层进行碘掺杂后,电池的短路电流得到了提高,而开路电压有所下降。电池暗反应研究表明,电流的升高是由于碘掺杂导致载流子浓度增大,载流子输运能力增强,电压的下降则是由于碘的掺人削弱了电池的整流特性。  相似文献   

14.
以CdCl2和Na2TeO3为反应物,巯基丙酸作为稳定剂和还原剂,通过微波辅助法快速合成高质量CdTe量子点,用CdTe量子点和染料N719共敏化TiO2纳米管阵列,以此为光阳极组装敏化太阳能电池。采用X射线衍射、紫外-可见吸收光谱、荧光光谱、扫描电镜和透射电镜等分析手段对样品进行表征,最后测定太阳能电池的光电转化效率。相对于传统CdTe量子点制备过程,采用巯基丙酸同时作为还原剂和稳定剂可以将以往的两步反应简化为一步,不需要复杂操作和氮气保护,减少了实验过程中有毒气体的排放;同时采用微波辅助法制备,还可以使量子点的生长更加快速。随着微波加热时间的增加,制得的量子点粒径增大,荧光发射峰红移,紫外可见吸收峰红移,量子产率最高达到63.6%。以CdTe量子点和染料N719共敏化TiO2纳米管阵列为光阳极的太阳能电池短路电流密度达到3.82mA/cm2,开路电压为0.518V,填充因子为0.32,光电转换效率达到0.63%,比未敏化太阳能电池光电转化效率高出152%。  相似文献   

15.
采用水热法和磁控溅射法相结合,在FTO导电玻璃上分别制备金属Pt和Cu1.8S/CuS薄膜,构成复合对电极,并将其成功应用到CdS量子点敏化TiO_2纳米管太阳电池中.这种复合对电极能够与多硫电解质相匹配,有效地提高量子点敏化太阳能电池的光电转化效率.利用X线衍射仪(XRD)、场发射扫描电镜电极(SEM)和透射电镜(TEM)对复合对电极和TiO_2纳米管光阳极的结构与形貌进行表征,通过AM1.5模拟太阳光测试系统对其光电性能进行表征.结果表明:复合对电相较与传统的Pt对电极和Cu1.8S/CuS单一对电极而言具有明显优势,提高了CdS量子点敏化太阳能电池的短路电流密度(9.27 m A/cm~2)、开路电压(0.577 V)和填充因子(49.4%),最终获得2.64%的光电转化效率.  相似文献   

16.
为了探究量子点共敏化对TiO_2纳米管阵列太阳能电池的光电转换效率的影响,采用连续离子层沉积法制备了不同循环沉积次数的Cd Se量子点敏化和Cd Se/Cd S量子点共敏化TiO_2纳米管阵列光阳极,并采用能谱分析、扫描电子显微镜、X射线衍射、紫外吸收光谱等方法对光阳极进行了表征。以制得的光阳极组装了太阳能电池,并对其光电转换效率和伏安特性进行了测试。研究结果表明:制备的Cd Se/Cd S量子点共敏化太阳能电池比Cd Se量子点单独敏化的太阳能电池更有效地吸收长波太阳光,在波长为575 nm处最大光电转化效率达到35.3%,对640 nm波长的光仍然有超过10%的量子效率;最大短路电流密度为5.45 m A/cm2,开路电压为0.64 V,光电转换效率达到1.95%,Cd Se/Cd S量子共敏化太阳能电池光电转换效率比Cd Se量子点单独敏化的提高了约2倍。  相似文献   

17.
在分析太阳能电池等效直流电路的基础上,利用电流-电压特性的函数关系式,建立了太阳能电池的仿真模型,研究了日照强度和内部电阻对电池伏安特性和光伏性能(如短路电流、开路电压、填充因子、输出功率和光电转换效率)的影响.研究结果表明:日照强度和内部串联电阻不仅明显影响了太阳能电池的伏安特性、短路电流和开路电压,而且也明显影响了太阳能电池的输出功率、填充因子和光电转换效率,同时太阳能电池的输出特性具有明显的非线性特征,并且存在一个最大的输出功率点和一个最佳的负载电阻值.  相似文献   

18.
文章采用溶胶凝胶(sol-gel)法,以藕粉和聚乙二醇作为造孔物,在不同烧结温度下制备尺寸为10nm的多孔TiO_2颗粒,并且将经过520℃热处理后得到的锐钛矿晶型TiO_2颗粒应用于染料敏化太阳能电池(dye-sensitized solar cells,DSSCs),并研究了藕粉对TiO_2光阳极组装的DSSCs光电性能的影响。结果表明,当加入1g藕粉,TiO_2的比表面积和孔隙率增大;膜厚为5μm的TiO_2光阳极DSSCs的光电转换效率达到了4.05%。  相似文献   

19.
采用强碱水热法合成二氧化钛纳米管,并与二氧化钛纳米颗粒混合作为染料敏化太阳能电池电极材料.当纳米管与纳米颗粒按照1:1摩尔比混合时,经过500℃烧结1h后,转化成锐钛矿晶型;平均孔体积0.30 cm3/g,平均孔径11.42 nm,比表面积为105.58 m2/g;电极对染料的吸附量达到4.85×10-8mol/cm2;电池的短路光电流密度8.70 mA/cm2,开路光电压0.76 V,填充因子0.60,光电转化效率3.96%.  相似文献   

20.
为了提高染料敏化太阳能电池的性能,对其光阳极半导体材料进行了改性.用一步水热法制备了铌、氟双掺杂二氧化钛(NFT)微球,它是由多层纳米管和纳米颗粒组合在一起形成的微米级球状颗粒.这种特殊的结构使得用NFT材料制作的光阳极具有较大的表面积,有利于染料吸附.NFT的结晶性比未掺杂的二氧化钛显著增强,且结晶度随掺杂量的增加而增强,有利于提高其中的电子迁移速率并降低表面极化,因此有助于提高染料敏化电池的短路电流密度和开路电压.入射单色光子-电子转换效率(IPCE)的测试结果表明,NFT制备的电池在可见光范围内的转换效率有显著提高,在紫外波段的本征转化效率也有一定提高,电池的整体转换效率比未掺杂时提高了38%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号