首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文章给出了图的λ4-最优性的邻域交条件.设图G是阶至少为34的λ4-连通图,若对G中任意一对不相邻顶点u,v,都有|N(u)∩N(v)|≥6且ξ4(G)≤3n(G)/2+3,则G是λ4-最优的;若对于λ4-连通图G中任意一对不相邻顶点u,v,都有|N(u)∩N(v)|≥6且对图中每个三角形T至少存在一个顶点v∈V(T)...  相似文献   

2.
本文给出了图的λ4-最优性的邻域交条件:设图G是阶数大于等于11的λ4-连通图,对G的任意一对不相邻顶点u,v,若u,v均不在三角形中,有|N(u)∩N(v)|≥5,若u或v在三角形中,有|N(u)∩N(v)|≥7,则G是λ4-最优的;若G中任意一对不相邻顶点u,v满足|N(u)∩N(v)|≥5,任意一条边xy满足|N(x)∩N(y)|≤2,则G也是λ4-最优的.这些结果在网络可靠性分析中有一定应用.  相似文献   

3.
图的λ3最优性的充分条件   总被引:3,自引:4,他引:3  
设G=(V,E)是有限简单无向图,U是一个边割.若G-U的每个分支的阶至少是3,则称U为G的3阶限制边割.G的3阶限制边连通度λ3(G)是G的3阶限制边割之中最少的边数.设F是图G的一个子图,令a(F)表示恰好有一个点在F上的边的数目,定义ζ3(G)=min{a(F):F是G的3阶连通导出子图}.如果λ3(G)=ζ3(G),则称G是λ3最优的.本文给出了图的λ3最优性的一个充分条件.  相似文献   

4.
为精确估计网络的可靠度,我们需要最优化其图模型的限制边连通度.本文证明了一个n阶连通图,当n≥10且最小度至少为[n/2]-2时,在一定的条件下这个图是λ3-最优的,并举例说明了这些条件的下界是最好可能的.  相似文献   

5.
文章给出了二部图是λ4-最优的一个领域交条件.设n为一个不小于8的正整数,令G=(X∪Y,E)为一个n阶二部图且ξ4(G)≤n/2.若G有一个饱和X或Y中所有顶点的匹配且对任意的u,v∈X和u,v∈Y都有|N(u)∩N(v)|≥4,则G是λ4-最优的.  相似文献   

6.
本文给出了二部图λ3最优性的一些充分条件,它们在网络可靠性分析中有一定应用.  相似文献   

7.
为精确估计网络的可靠度,我们需要最优化其图模型的限制边连通度,证明一个n≥11阶最小度δ(G)≥[n/2]-3的λ4-连通图G,在一定的条件下是λ4-最优的.进而,若n≥12,则G是超级-λ3图.并举例说明了最小度的下界是最好可能的.  相似文献   

8.
分别给出了直径为2的图的λ3最优性和不含三角的图是超级λk的一个充分条件,讨论了不含三角的图的λk最优性和λk超级性的关系,这些结果在网络可靠性分析中有一定应用.  相似文献   

9.
作者给出了二部图是λ4-最优的和超级-λ4的范型条件,而且给出例子说明其独立性.这些结果在网络可靠性分析中有一定应用.  相似文献   

10.
文章给出了λ4-最优图的一个充分条件.设G是阶为n≥11的λ4-连通图,若对G中任意一对不相邻顶点u,v,有|N(u)∩N(v)|≥6且G|N(u)∩N(v)|至少包含16条边,则G是λ4-最优的.  相似文献   

11.
笔者利用顶点的度给出了图是超级-λ′的两个充分条件,而且给出例子说明其最好可能性和独立性,这些结果在网络可靠性分析中有一定应用.  相似文献   

12.
设G是有限简单无向图, k是正整数,使G-S的每个分支都包含至少k个点的边割S称为G的k-限制边割。若任意最小k-限制边割都孤立一个k阶连通子图,则称图G是超级-λk 的。本文应用邻域条件给出了图是超级-λ3 的充分条件。  相似文献   

13.
图是超级-λ′的充分条件   总被引:1,自引:1,他引:0  
设G=(V,E)是有限简单无向图.如果G的每个最小限制边割都孤立出一条边,则称G是超级-λ′的.笔者在一定意义上改进了文献[7]给出的图为超级-λ′的一个充分条件.  相似文献   

14.
如果图G的每个最小限制边割都孤立出一条边,则称G是超级-λ′的.本文给出了直径为2的图是超级-λ′的一个充分条件.  相似文献   

15.
图的k-限制边连通度是图的边连通度概念的推广,用它可以更加精确的度量网络的可靠性。通过讨论λ3-最优但非超级λ3-最优二部图的性质得到了二部图超级λ3-最优的充分条件。  相似文献   

16.
分析了完全二部图Kr,s的λ4-最优性.  相似文献   

17.
文章给出了图是λ5-最优的邻域交条件.设G是一个λ5-连通图,定义ξ5(G)=min{|[X,]|:X∈V(G),|X|=5,G[X]连通},若λ5(G)=ξ3(G),则称G是λ5-最优的.若对G中任意一对不相邻的顶点u和v,都有|N(u)∩N(v)|≥5且G满足ξ3(G)≤V(G)/2+10,|V(G)|≥31,则...  相似文献   

18.
本文给出了图的λk最优性和超级性(k=2,3)的用邻域交与边度表示的充分条件.  相似文献   

19.
设G是有限简单无向图,k是正整数.使G-S每个分支的阶不小于k的边割S称为G的k阶限制边割.G的四阶限制边连通度λ4(G)是G的四阶限制边割之中最少的边数.若对于任意边e∈E(G),均有λ4(G-e)=λ4(G)-1,则称G是极小四阶限制边连通图.定义ξ4(G)=min {(e)(U):U(∪)V(G),G[U]是四阶连通导出子图},此处(e)(U)表示恰好有一个点在U上的边的数目.若λ4(G)=ξ4(G),则称G是λ4最优的.若每个5阶限制边割都孤立出G的一个5阶连通子图,则称G是超级5阶边连通的.笔者给出:极小四阶限制边连通图若不是λ4最优的,则是3正则,围长为5,任意边都关联5圈,且是超级5阶边连通的图.  相似文献   

20.
设G是一个λ5-连通图,定义ξ5(G)=min{|[X,X]|:X■V(G),|X|=5,G[X]是连通子图},若λ5(G)=ξ5(G),则称G是λ5-最优图.文章给出了满足顶点数v≥17且最小度δ≥v/2-4的λ5-连通图G在一定特殊条件下是λ5-最优图的一个充分条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号