首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
证明了在一些限制条件下的2-强连通竞赛图包含3个外孤泛圈点,并且讨论了一些强连通竞赛图的外弧泛圈点的个数。  相似文献   

2.
圆可分解的局部竞赛图中的点外弧泛圈问题   总被引:1,自引:0,他引:1  
Yao Tianxing(Discrete Appl.Math.,2000,99:245-249)已经证明了每一个强连通竞赛图都包含点,它的每条外弧都是泛圈的.将此结论推广到强连通的圆可分解的严格局部竞赛图,并证明了每一个强连通的圆可分解的严格局部竞赛图D,它的圆分解是D=R[D1,D2,…,Da],其中Di,i=1,2,…,a是强连通竞赛图,那么D包含一个点v,它的每条外弧是(g 1)-泛圈的,g=max{l(Ca)|Ca是包含a的最长诱导圈,a∈V(R),l(Ca)是Ca的长度}。  相似文献   

3.
外弧泛圈点问题是图论研究中一个比较热门的问题,文章在某些限制条件下研究了4-强连通竞赛图的外弧泛圈点问题.文中使用路收缩等方法证明并给出了4-强连通竞赛图中存在3个外弧泛圈点的一个充分条件,而且给出了一些相关的结论.  相似文献   

4.
非圆可分解的局部竞赛图中的点外弧泛圈问题   总被引:1,自引:0,他引:1  
Yao Tianxing(Discrete Appl.Math.2000,99:245-249)已经证明每一个强连通竞赛图都包含外弧泛圈点.将此结论推广到局部竞赛图,从而得到相应的结论:每一个强连通的非圆可分解的严格局部竞赛图T,如果包含一个强连通的极小分离集S使得T-S不是半完全的,则它一定存在4-外孤泛圈点.  相似文献   

5.
设T(m,n)表示不同构的m×n二部分竞赛图的个数,借助T(m,n)导出了不同构的强连通m×n二部分竞赛图的数目及同构的可约m×n二部分竞赛图的数目公式。  相似文献   

6.
为了在强连通多部竞赛图中寻找顶点和弧的外路,采用对原图去顶点或去弧的方法。通过在新得到的有向图中寻找哈密尔顿圈,进而找到顶点和弧的外路。研究结果表明强连通多部竞赛图中顶点和弧泛外路的两个充分条件被获得。  相似文献   

7.
证明了每个连通的但非强连通的竞赛图中至少存在一个泛连通性点对且该点对可在多项式时间内找到.另外,我们还得到连通的但非强连通的竞赛图中存在泛连通性点对的个数.特别地,证明了每个连通的但非强连通的竞赛图中不存在恰好两个泛连通性点对.  相似文献   

8.
证明了无孤立点的边数不小于3的三角连通的半无爪图是点泛圈的.  相似文献   

9.
范更华证明了如下结论:设G是具有n个点的二连通图(n≥3),若对任一对使d(u,v)=2的点有max{d(u),v(v)}≥π/2,则G是哈密顿圈的。将范氏条件限制在二部图上,已经得到二连通的二部图是哈密顿圈的一个类似充分条件。本文证明该充分条件亦保证了二部图的偶泛圈性:设二连通的平衡二部图G=(X,Y;E)每部有n个点,若对任一对使d(U,v)=2的点有max{d(u),d(v)}>π/2,则G为偶泛圈的。该结果是最好的可能。  相似文献   

10.
泛圈图的一个充分条件   总被引:3,自引:0,他引:3  
设G是一个n阶2—连通图且δ(G)≥4,本文证明了:若对于G中任意距离为2的两点u和ν均有|N(u)∪N(ν)|≥n-4.则G是泛圈图或n=8且G≌K_(4.4)。  相似文献   

11.
设Tm,n=(X,Y,E)是一个m×n二部竞赛图,且s(v)表示v在Tm,n中的得分.对于u∈Y,记L(u)={v∈V(Tm,n)|u→v且s(v)=n-1}和J(u)={v∈V(Tm,n)|v→u且s(v)=1}.对于v∈X,L(v)和J(v)的定义是类似的.一个强的二部竞赛图Tm,n称为是几乎2-强的,如果对于每一个x∈V(Tm,n),Tm,n-x-L(x)-J(x)是强的.刻划了蕴含几乎2-强二部得分序列的特征.此结论包含了蕴含2-强二部得分序列的特征.  相似文献   

12.
设G是阶为n的简单Hamilton图,若存在m(3≤m相似文献   

13.
本文证明:如果图G是阶为n的2连通图,δ(G)≥t≥2,蕴含则G是泛圈图,除非或者n/3≤t<n/2.  相似文献   

14.
设 e=uv 是 G 中住一条边,e 的次数 d(e)=d(u)+d(v),其中 d(u)和d(u)分别为顶点 u 和 v 在 G 中的度数。本文的主要结果是:设 G 是几乎无桥的,n≥11阶简单连通图,若对任意相距为1的两边 e_0和 e_1,d(e_0)+d(e_1)≥2n-5,则 G 的线图 L(G)是泛圈的。  相似文献   

15.
在文[1]中给出定理,设G是一个n-阶2-连通图且δ(G)≥t,若对于G的任意两个不相邻的点u和v,均有|N(u)∪N(v)|≥n-t成立,则G是一个泛圈图或G≌Kn/2,n/2.本文的目的在于将此定理的条件减弱,只对图中距离为2的点进行讨论,得出了泛圈图的一个充分条件.文中主要用数学归纳法对定理进行证明,先在引理中给出了几种特殊情况的证明,接着在定理的证明中讨论了一般情形.  相似文献   

16.
GUO Yubao和Volkmann证明了一个2-强连通多部竞赛图包含两个分量共轭圈,使得每部至少有一个点在其中的一个圈中.得到的结论是Guo和Volkmann的定理的进一步推广.  相似文献   

17.
对2连通n阶图某些结果的改进   总被引:2,自引:0,他引:2  
研究 NC≥ n-δ条件下 Cnm 点泛圈图的性质 ,得到 2连通 n(n≥ 6 )阶图 G.若 N C≥ n-δ,则 G是 Cn5 点泛圈图或 Kn/ 2 ,n/ 2 .改进了 Faudree等人的一些结果  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号