共查询到16条相似文献,搜索用时 102 毫秒
1.
非负矩阵和M-矩阵是矩阵论中两类重要的矩阵.矩阵特征值的研究是如今的重要问题.利用Brauer定理和Gerschgorin定理给出了非负矩阵Hadamard积和非奇异M-矩阵Fan积的特征值新界.所有的新结果只依赖相关矩阵的元素,其计算简单容易.将所给定理的优越性进行了理论上的比较.通过数值例子验证所得结果改进了其他文献中的相关结果. 相似文献
2.
利用著名的Gersgorin圆盘定理,给出非负矩阵的Hadamard积的谱半径上界的一个新估计式和非奇异M矩阵的Fan积的最小特征值的下界估计,易于计算.并通过具体例子加以比较,表明所得的估计结果在一定条件下更为精确. 相似文献
3.
分别给出了非奇异M-矩阵的逆矩阵和非奇异M-矩阵的Hadamard积与非奇异M-矩阵Fan积的最小特征值下界新的估计式;同时给出了非负矩阵Hadamard积的谱半径上界新的估计式;这些估计式都只依赖于矩阵的元素,易于计算.算例表明,这些估计式在一定条件下改进了现有结果. 相似文献
4.
矩阵Hadamard积和Fan积的特征值界的估计 总被引:5,自引:1,他引:5
给出非负矩阵A与B的Hadamard积AB的谱半径上界的一个新估计式和非奇异M-矩阵A和B的Fan积A*B的最小特征值下界的一个新估计式,这2估计式只依赖于矩阵A与B的元素,易于计算.例证表明,所得估计式在一定条件下比现有估计式更为精确. 相似文献
5.
给出非奇异M-矩阵A和B的Fan积AB的最小特征值下界和非负矩阵A和B的Hadamard积A·B的谱半径上界的新估计式,这些估计式都只依赖于矩阵的元素.数值例子表明,新估计式在一定条件下改进了现有的结果. 相似文献
6.
关于非奇异M-矩阵A与B的Fan积A*B,给出A*B的最小特征值τ(A*B)下界的新估计式,同时也给出非负矩阵A与B的Hadamard积A*B的谱半径ρ(A*B)上界的新估计式,这些估计式只与矩阵的元素有关,易于计算.数值算例也说明所得估计式改进了现有的结果. 相似文献
7.
孙德淑 《西南师范大学学报(自然科学版)》2016,41(2)
给出了非负矩阵A和B的Hadamard积的谱半径上界,以及M-矩阵A和B的Fan积的最小特征值下界的新估计式.这些估计式都只依赖于矩阵的元素,易于计算.数值例子表明,新估计式在一定条件下改进了现有的一些结果. 相似文献
8.
杜琨 《华东师范大学学报(自然科学版)》2008,2008(5):45-50
利用Cauchy--Schwitz不等式给出两个n阶非负矩阵A和B的Hadamard积A。B的谱半径ρ(A。B)的一组上界;并且与前人给出的结果进行比较,从而说明新结果的创新之处.类似地,利用Cauchy--Schwitz不等式给出两个n阶M--方阵A和B的Fan积AB的最小特征值т(AB)的一组下界. 相似文献
9.
非负矩阵Hadamard积谱半径的界 总被引:2,自引:0,他引:2
利用Cauchy—Schwitz不等式给出两个非负矩阵和Hadamard积的谱半径上界的一个新估计式,并与前人给出的结果进行比较。数值例子表明,新估计式在一定条件下改进了现有的结果。 相似文献
10.
11.
李艳艳 《文山师范高等专科学校学报》2012,25(3):27-30
文章给出三对角非负矩阵A与B的Hadamard积A。B的谱半径上界的估计式和非奇异三对角M-矩阵A和B的Fan积A*B的最小特征值下界的估计式,这些估计式只依赖于矩阵A与B的元素,因而易于计算. 相似文献
12.
陈付彬 《贵州大学学报(自然科学版)》2013,(5):1-3
利用Cauchy—Schwitz不等式给出两个非负矩阵A和曰的Hadamard积的谱半径上界的一个新估计式,并与前人给出的结果进行比较。数值例子表明,新估计式在一定条件下改进了现有的结果。 相似文献
13.
本文利用了Cassini卵形域,给出了非负矩阵Hadamard积的最大特征值的上界、M-矩阵Fan积的最小特征值的下界以及M-矩阵与其逆矩阵Hadamard积最小特征值的下界.理论分析表明本文获得的结果比相应文献中的结果更精确. 相似文献
14.
对于两个非负矩阵A和B的Hadamard积,利用特征值包含域定理给出谱半径的新上界估计式.数值例子表明新估计式在某些情况下比现有的估计式更为精确,并且这些估计式只依赖于两个非负矩阵的元素,更容易计算. 相似文献
15.
设矩阵A与B是非负矩阵,给出A与B的Hadamard积A°B谱半径ρ(A°B)上界的新估计式。新估计式只与矩阵的元素有关,易于计算。理论分析和数值算例也说明所得估计式改进了现有的一些结果。 相似文献
16.
非负矩阵的Hadamard积谱半径上界的估计 总被引:1,自引:1,他引:0
非负矩阵是一类特殊矩阵,广泛地应用于数值计算、图论、线性规划、计算机科学、自动控制等领域。两个非负矩阵的Hadamard积的谱半径问题是非负矩阵理论中一个重要问题。关于两个非负矩阵的Hadamard积A°B,我们给出A°B谱半径的新上界,这一上界改进了文献[1]、文献[2]和文献[3]中的结果。 相似文献