首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 102 毫秒
1.
非负矩阵和M-矩阵是矩阵论中两类重要的矩阵.矩阵特征值的研究是如今的重要问题.利用Brauer定理和Gerschgorin定理给出了非负矩阵Hadamard积和非奇异M-矩阵Fan积的特征值新界.所有的新结果只依赖相关矩阵的元素,其计算简单容易.将所给定理的优越性进行了理论上的比较.通过数值例子验证所得结果改进了其他文献中的相关结果.  相似文献   

2.
李华 《河南科学》2012,30(6):680-683
利用著名的Gersgorin圆盘定理,给出非负矩阵的Hadamard积的谱半径上界的一个新估计式和非奇异M矩阵的Fan积的最小特征值的下界估计,易于计算.并通过具体例子加以比较,表明所得的估计结果在一定条件下更为精确.  相似文献   

3.
 分别给出了非奇异M-矩阵的逆矩阵和非奇异M-矩阵的Hadamard积与非奇异M-矩阵Fan积的最小特征值下界新的估计式;同时给出了非负矩阵Hadamard积的谱半径上界新的估计式;这些估计式都只依赖于矩阵的元素,易于计算.算例表明,这些估计式在一定条件下改进了现有结果.  相似文献   

4.
矩阵Hadamard积和Fan积的特征值界的估计   总被引:5,自引:1,他引:5  
给出非负矩阵A与B的Hadamard积AB的谱半径上界的一个新估计式和非奇异M-矩阵A和B的Fan积A*B的最小特征值下界的一个新估计式,这2估计式只依赖于矩阵A与B的元素,易于计算.例证表明,所得估计式在一定条件下比现有估计式更为精确.  相似文献   

5.
陈付彬  禹旺勋 《河南科学》2014,32(7):1156-1159
给出非奇异M-矩阵A和B的Fan积AB的最小特征值下界和非负矩阵A和B的Hadamard积A·B的谱半径上界的新估计式,这些估计式都只依赖于矩阵的元素.数值例子表明,新估计式在一定条件下改进了现有的结果.  相似文献   

6.
关于非奇异M-矩阵A与B的Fan积A*B,给出A*B的最小特征值τ(A*B)下界的新估计式,同时也给出非负矩阵A与B的Hadamard积A*B的谱半径ρ(A*B)上界的新估计式,这些估计式只与矩阵的元素有关,易于计算.数值算例也说明所得估计式改进了现有的结果.  相似文献   

7.
给出了非负矩阵A和B的Hadamard积的谱半径上界,以及M-矩阵A和B的Fan积的最小特征值下界的新估计式.这些估计式都只依赖于矩阵的元素,易于计算.数值例子表明,新估计式在一定条件下改进了现有的一些结果.  相似文献   

8.
利用Cauchy--Schwitz不等式给出两个n阶非负矩阵A和B的Hadamard积A。B的谱半径ρ(A。B)的一组上界;并且与前人给出的结果进行比较,从而说明新结果的创新之处.类似地,利用Cauchy--Schwitz不等式给出两个n阶M--方阵A和B的Fan积AB的最小特征值т(AB)的一组下界.  相似文献   

9.
非负矩阵Hadamard积谱半径的界   总被引:2,自引:0,他引:2  
利用Cauchy—Schwitz不等式给出两个非负矩阵和Hadamard积的谱半径上界的一个新估计式,并与前人给出的结果进行比较。数值例子表明,新估计式在一定条件下改进了现有的结果。  相似文献   

10.
11.
文章给出三对角非负矩阵A与B的Hadamard积A。B的谱半径上界的估计式和非奇异三对角M-矩阵A和B的Fan积A*B的最小特征值下界的估计式,这些估计式只依赖于矩阵A与B的元素,因而易于计算.  相似文献   

12.
利用Cauchy—Schwitz不等式给出两个非负矩阵A和曰的Hadamard积的谱半径上界的一个新估计式,并与前人给出的结果进行比较。数值例子表明,新估计式在一定条件下改进了现有的结果。  相似文献   

13.
本文利用了Cassini卵形域,给出了非负矩阵Hadamard积的最大特征值的上界、M-矩阵Fan积的最小特征值的下界以及M-矩阵与其逆矩阵Hadamard积最小特征值的下界.理论分析表明本文获得的结果比相应文献中的结果更精确.  相似文献   

14.
总目次     
对于两个非负矩阵AB的Hadamard积,利用特征值包含域定理给出谱半径的新上界估计式.数值例子表明新估计式在某些情况下比现有的估计式更为精确,并且这些估计式只依赖于两个非负矩阵的元素,更容易计算.  相似文献   

15.
设矩阵A与B是非负矩阵,给出A与B的Hadamard积A°B谱半径ρ(A°B)上界的新估计式。新估计式只与矩阵的元素有关,易于计算。理论分析和数值算例也说明所得估计式改进了现有的一些结果。  相似文献   

16.
非负矩阵的Hadamard积谱半径上界的估计   总被引:1,自引:1,他引:0  
非负矩阵是一类特殊矩阵,广泛地应用于数值计算、图论、线性规划、计算机科学、自动控制等领域。两个非负矩阵的Hadamard积的谱半径问题是非负矩阵理论中一个重要问题。关于两个非负矩阵的Hadamard积A°B,我们给出A°B谱半径的新上界,这一上界改进了文献[1]、文献[2]和文献[3]中的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号