共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
有效的软件缺陷预测能够显著提高软件安全测试的效率,确保软件质量,支持向量机(support vector machine,SVM)具有非线性运算能力,是建立软件缺陷预测模型的较好方法,但其缺少统一有效的参数寻优方法。本文针对该问题提出一种基于遗传优化支持向量机的软件缺陷预测模型,将支持向量机作为软件缺陷预测的分类器,利用遗传算法进行最优度量属性的选择和支持向量机最优参数的计算。实验结果表明,基于遗传优化支持向量机的软件缺陷预测模型具有较高的预测准确度。 相似文献
3.
针对现有实时寿命预测方法没有充分利用同类产品性能退化数据信息的问题,从研究退化轨迹相似性的角度出发,提出一种基于遗传算法(GA)优化小波支持向量回归机(WSVR)的实时退化轨迹建模和寿命预测方法.首先基于GA优化WSVR建立各同类产品的性能退化轨迹模型,然后以特定个体的历史测量时刻向量为基准,计算同类产品的相应退化测量值向量及其与特定个体退化测量值向量的Euclid距离,并根据Euclid距离确定隶属度权值,基于加权思想建立特定个体的退化轨迹模型,最后结合实时测量数据依次更新退化测量值向量、Euclid距离、隶属度权值和退化轨迹模型,实现实时寿命预测.实例分析验证了所提出的方法是有效的. 相似文献
4.
许利军 《新乡学院学报(自然科学版)》2012,(4):339-340,344
为了提高网络流量的预测精度,准确描述网络流量变化规律,提出了一种基于向量回归的网络流量预测模型,它能全面刻画网络流量变化趋势. 相似文献
5.
基于zigbee接收信号强度指标的室内定位由于成本低,硬件功耗低,易于实现而受到越来越多的关注。为了提高zigbee技术的室内定位精度,减少环境因素的不利影响,本文提出了一种遗传算法优化支持向量回归的室内定位方法。该算法分为离线采集和在线预测两个阶段,离线采集进行指纹数据库的建立,在线预测则根据训练模型进行位置预测。首先所有的采集数据通过卡尔曼滤波进行处理,然后通过遗传算法优化支持向量回归(GA-SVR)的惩罚参数 、RBF核宽度 和损失函数变量 ,从而使支持向量回归达到最好的位置预测性能。在实际场景中的实验结果表明,与PSO-SVR, GS-SVR, SVR和WKNN算法相比,该算法具有较好的定位性能。 相似文献
6.
基于支持向量回归机的中国碳排放预测模型 总被引:2,自引:0,他引:2
宋杰鲲 《中国石油大学学报(自然科学版)》2012,(1):182-187
选取人口、城镇化率、人均GDP、服务业增加值比重、单位GDP能耗、煤炭消费比例等6项影响因素作为自变量,运用支持向量回归机方法构建中国碳排放预测模型。以1980—2009年碳排放及影响因素数据为样本,通过训练、测试得到具有良好学习与推广能力的支持向量回归机模型。结合"十二五"规划,设置不同情境下影响因素预测值,对2010—2015年中国碳排放进行预测。预测结果表明,中国可适当降低GDP增速,不断优化能源结构,以确保碳减排目标的有效实现。 相似文献
7.
针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(Data Dependent Kernel-SVR,DDK-SVR)方法.将该方法用于风速预测中,建立DDK-SVR风速预测模型,并将预测结果与传统支持向量机、神经网络方法进行对比.结果表明,DDK-SVR方法具有更高的预测精度. 相似文献
8.
利用主成分分析对影响变量进行特征提取,选择通用性较强的径向基核函数,应用遗传算法对影响支持向量回归模型的2个重要参数惩罚因子C和核函数参数γ进行优化,建立了基于遗传算法优化的支持向量回归模型,并以提取特征作为模型输入应用于后寨地下河流域平山天窗水位预测.预测结果表明,与传统偏最小二乘回归模型相比,优化后的模型具有更高的... 相似文献
9.
采用支持向量机理论建立了一种新的支持向量回归预测模型,模型的求解可转化为二次规划问题,并能实现模型参数的自动选择,运用MATALAB软件进行编程实现.用此模型对我国财政收入问题进行了预测,并与统计回归模型进行了比较,结果表明了该模型具有较好的预测效果和概化能力. 相似文献
10.
基于遗传算法优化参数的支持向量机短期负荷预测方法 总被引:11,自引:1,他引:11
通过研究参数选择和支持向量机预测能力的影响,建立利用遗传算法优化参数的支持向量机负荷预测系统.通过遗传算法对支持向量机(SVM)预测模型的各项参数进行寻优预处理,找到最优的参数取值,然后,代入支持向量机SVM预测模型中,得基于遗传算法的支持向量机(GA-SVM)模型,利用此模型对短期电力负荷进行预测研究.通过实例验证,选择河北某地区2005-03-02至2007-05-22每天各个时点的数据进行分析,并且选择SVM模型与BP(Back propagation)神经网络进行对比.研究结果表明:用GA-SVM算法得到的均方根相对误差仅为2.25%,比用SVM模型和BP神经网络所得的均方根相对误差比分别低0.58%和1.93%.所提出的测试方法克服了传统参数选择方法存在的缺点(如研究者往往凭经验和有限的实验给定一组参数,而不讨论参数制定的合理性),提高了支持向量机的预测精度. 相似文献
11.
传统机器学习模型在地下水潜在性预测中,未考虑最优因子组合,会对地下水潜在性制图产生不利影响。为此,提出了遗传算法优化支持向量机的地下水潜在性预测方法。以云南省彝良县为研究区,从地形、水文、土壤、地质等方面选取了共15个影响因子;考虑模型性能和影响因子的作用,利用遗传优化算法筛选了包含11个影响因子的最优因子组合;然后使用支持向量机方法构建了地下水潜在性预测模型;最后计算了因子优化前后的模型准确度和受试者工作特性曲线下面积(area under curve,AUC),并绘制了模型的受试者工作特性(receiver operating characteristic,ROC)曲线和地下水潜在性预测图。结果表明:因子优化前模型的准确度为0.774,验证集AUC为0.789,因子优化后模型的准确度为0.777,验证集AUC为0.806,分别提高了0.003和0.017。可见,所提方法的准确性、可靠性优于传统的支持向量机法,其结果可以为区域水文地质调查和地下水资源管理与规划提供科学参考。 相似文献
12.
GA优化支持向量机用于混沌时间序列预测 总被引:11,自引:1,他引:11
介绍了利用支持向量机与重构相空间理论预测混沌时间序列的方法,并以股价时间序列为样本,比较了几种常用核函数的预测能力,实验表明高斯核的预测能力明显好于其它核.使用遗传算法优化了高斯核支持向量机的参数,优化后其预测能力较经验定参方法有明显提高,且好于传统的预测方法. 相似文献
13.
支持向量机是一种基于统计学习理论的新颖的机器学习方法,由于其出色的学习性能。该技术已成为当前国际机器学习界的研究热点.这种方法已广泛用于解决分类和回归问题.在回归中。目前的研究和应用都限于单输出的情况,而实际中有很多属于多输出回归问题.针对这一点,将支持向量回归算法推广到多输出情况.仿真实例说明了该算法的可行性. 相似文献
14.
一种新的支持向量回归预测模型 总被引:3,自引:0,他引:3
运用支持向量机(SVM)理论,建立了一种新的支持向量回归(SVR)预测模型.模型的求解可转化为二次规划问题,并能实现模型参数的自动选择.用此模型对我国粮食产量增长率的预测表明,模型具有较好的概化能力. 相似文献
15.
提出一种新的主机负载表征指标--并发连接数,分析基于并发连接数的主机负载的自相似性和非平稳性,构建基于小波和支持向量回归的负载预测及合成算法.将主机负载序列进行多层小波分解与单支重构,低频信号采用AR模型预测,最小尺度高频信号采用加权移动平均方法预测,其它分支采用支持向量回归(SVR)预测;各信号预测值基于SVR方法加以合成,获得最终预测值.实验结果表明,将小波与支持向量回归应用于Web服务器负载预测的效果明显好于传统方法. 相似文献
16.
Support vector machines (SVMs) have been introduced as effective methods for solving classification problems. However, due to some limitations in practical applications, their generalization performance is sometimes far from the expected level. Therefore, it is meaningful to study SVM ensemble learning. In this paper, a novel genetic algorithm based ensemble learning method, namely Direct Genetic Ensemble (DGE), is proposed. DGE adopts the predictive accuracy of ensemble as the fitness function and searches a good ensemble from the ensemble space. In essence, DGE is also a selective ensemble learning method because the base classifiers of the ensemble are selected according to the solution of genetic algorithm. In comparison with other ensemble learning methods, DGE works on a higher level and is more direct. Different strategies of constructing diverse base classifiers can be utilized in DGE. Experimental results show that SVM ensembles constructed by DGE can achieve better performance than single SVMs, hagged and boosted SVM ensembles. In addition, some valuable conclusions are obtained. 相似文献
17.
基于模糊回归支持向量机的短期负荷预测 总被引:2,自引:0,他引:2
支持向量机(SVM)是一种新颖的机器学习方法,具有泛化能力强、全局最优和计算速度快等突出优点.模糊数学在不确定性、不精确性及噪声引起的问题上,有其特有的计算分析操作,能有效地分析和处理模糊信息.研究了一种模糊回归支持向量机模型,该模型将两者有机结合,发挥了各自的优点.将其应用到电力系统短期负荷预测,仿真结果表明,所提方法不仅具有与支持向量机方法相同的预测精度,且提供了更多的有用信息. 相似文献
18.
水文时间序列受多种环境因素影响,表现出明显的综合性,传统的利用单一神经网络进行特征提取解释性不足.提出一种基于支持向量回归和高斯过程回归的水文时间序列特征提取方法.首先,罗列水文时间序列候选特征,将特征组合等价于0-1规划,并将各特征组合分别进行支持向量回归与高斯过程回归建模;其次,利用遗传算法演化求解一组最优特征组合... 相似文献