首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
辽河支流条子河表层水体中多环芳烃的污染特征   总被引:1,自引:0,他引:1  
为了解辽河源头区典型支流——条子河四平段表层水体中多环芳烃(PAHs)的污染特征,分别于丰水期、平水期和枯水期采集条子河10个代表性断面的上覆水水样,测定了样品中16种优控PAHs的质量浓度、分析了其时空分布和来源,并对其生态风险进行了评价。结果表明:条子河表层水体中总PAHs的质量浓度(∑PAHs)范围为319.8~3 715.9 ng/L,平均值为1 476.0 ng/L,PAHs的组成以2~3环为主,占∑PAHs总量的53.1%~81.0%,5~6环的PAHs均未检测出。不同水期间,∑PAHs均值的大小顺序为:枯水期(2 035.0 ng/L)平水期(1 272.5 ng/L)丰水期(967.9 ng/L)。空间分布上,∑PAHs的检测最高值(3 715.9 ng/L)和平均浓度最大值(3 194.8 ng/L)均出现在位于四平市城区出境断面(汇合口)处。PAHs主要来源是石油、草木、煤炭的混合燃烧。条子河表层水体中苯并[a]芘的当量为5.1~36.1 ng/L,高于国家地表水环境质量标准值,条子河表层水体中PAHs存在一定的生态风险。  相似文献   

2.
不同屋面雨水径流中PAHs污染特性对比分析   总被引:2,自引:0,他引:2  
对南京市典型沥青屋面、瓦屋面径流中PAHs含量进行了9场降雨事件的现场取样监测,对比分析了2种不同屋面径流中PAHs的EMC值及其各组分的浓度,并对其初期效应及影响因素进行了分析和探讨.结果表明,沥青屋面径流PAHs污染较严重,其平均浓度为4 261.7 ng/L,而瓦屋面径流PAHs平均浓度仅为351.2 ng/L.沥青屋面、瓦屋面径流中PAHs均以4环组分为主,沥青屋面径流中3环组分占较大含量,而瓦屋面径流中5环和6环PAHs浓度仅次于4环PAHs.大多数降雨事件中总PAHs及各组分均存在较显著的初期效应;前期晴天数对PAHs在屋面的累积影响最大,瓦屋面径流PAHs含量受降雨强度影响较大,而沥青屋面径流PAHs含量受降雨量影响较大.  相似文献   

3.
2016年12月北江清远段采集19个水和表层沉积物样品,采用气相色谱质谱(GCMS)法测定了样品中的多环芳烃(PAHs),分析了枯水期北江水环境中PAHs的污染水平,并对生态风险进行了评价。结果表明,枯水期北江清远段水中PAHs浓度范围为41. 2~413. 8 ng·L~(-1),主要以二环芳烃和三环芳烃为主,与国内外已报道河流湖泊相比,北江清远段水中PAHs污染处于中等污染水平;沉积物中PAHs浓度范围为54. 8~951. 5ng·g~(-1),以三环芳烃和四环芳烃为主,与国内外河流湖泊沉积物相比较,处于低污染水平。运用特征比值法对PAHs来源进行分析,北江清远段水和沉积物中枯水期PAHs污染来源主要由燃烧源所致,部分采样点存在混合源。通过计算终生致癌风险(ILCR)模型对北江清远段水体进行健康风险评价,结果表明,枯水期各采样点的致癌风险可忽略,婴幼儿的PAHs致癌风险高于青少年和成人。采用效应区间低、中值法(ERL/ERM)对枯水期表层沉积物中PAHs进行生态风险评价,个别点位表层沉积物中Dib超出ERL值,对生态环境潜在负面效应较小。  相似文献   

4.
在丰水期、 枯水期和平水期分别采集松花江吉林市段的江水和沉积物样品, 先用气相色谱 质谱联用仪(GC MS)测定其中16种多环芳烃(PAHs)的含量, 再通过比值法对各水期江水和沉积物中的PAHs进行来源识别, 并分别利用商值法和风险效应值法评价江水和沉积物的生态风险. 结果表明: 松花江吉林市段丰水期、 枯水期和平水期江水中PAHs的质量浓度分别为0.917~3.974 μg/L,0.980~3.293 μg/L和0.771~4.127 μg/L; 丰水期和平水期沉积物中PAHs的质量比分别为1 035.5~1 732.0 ng/g和1 188.5~1 632.0 ng/g; 不同水期江水中的PAHs质量浓度变化较大, 沉积物中的PAHs质量比变化较小; PAHs为石油源和燃烧源混合输入所致; 江水中PAHs的生态风险较小, 表层沉积物中的PAHs具有一定的生态风险.  相似文献   

5.
淮河中游重化工聚集区干流水体中多环芳烃研究   总被引:2,自引:0,他引:2  
淮河是中国七大河流之一,在中国国民经济发展中具有举足轻重的地位.有机物污染是淮河的主要污染形式.多环芳烃(PAHs)是一种典型持久性有机污染物(POPs),在水中的浓度较低.易于被悬浮物和沉积物吸附.为探讨淮河中游重化工聚集区干流水体中多环芳烃的含量和分布情况,2007年10月在淮南和蚌埠段采集悬浮物样品和表层沉积物样品.所采集的环境样品经自然风干后,利用二氯甲烷提取,无水硫酸钠和固相萃取柱组合净化,采用气相色谱-质谱联用法(GC-MS)同时定性和定量检测其PAHs含量,获得了美国EPA优先表中所列的16种PAHs含量数据,在此基础上探讨了淮河中游重化工聚集区干流水体悬浮物和沉积物样品中PAHs的分布特征.并初步分析了蚌埠市饮水源区蚌埠闸处PAHs的超标情况.结果表明:①淮河中游重化工聚集区干流水体环境样品中PAHs总含量变化幅度较大,其悬浮物浓度范围为1 169.44~4 048.86 ng/g,表层沉积物中浓度范围为91.98~1 292.52 ng/g;②就单一组分而言,悬浮物中萘含量最高,表层沉积物中二苯并[a,h]蒽最高;③受采样点环境和PAHs本身性质影响,悬浮物中PAHs量远大于其沉积物中量,整体呈现悬浮物中以低环PAHs为主、沉积物中以高环PAHs为主的特征;④根据<国家海洋沉积物质量标准>,蚌埠闸沉积物中PAHs超标严重,对蚌埠市的饮水安全产生一定的威胁,同时,此处悬浮物中PAHs含量也很高,潜在危害性更大,应给予重视.  相似文献   

6.
条子河中多环芳烃和有机氯农药的时空分布及来源解析   总被引:7,自引:0,他引:7  
以辽河支流条子河中的多环芳烃(PAHs)和有机氯农药(OCPs)为目标物, 分别于春汛期、 丰水期、 平水期和枯水期采集水样及表层沉积物样品, 分析样品中PAHs和OCPs的赋存状态及污染物在该区域的分布和来源. 结果表明: 条子河水中总PAHs的质量浓度为658.1~3 096.6 ng/L, 均值(算术平均值, 下同)为
1 522.1 ng/L; 沉积物中总PAHs的质量比为775.7~2 835.4 ng/g, 均值为1 374.0 ng/g; 条子河水中总α,β,γ HCHs(六六六)的质量浓度为5.36~16.57 ng/L, 均值为10.93 ng/L; 滴滴涕(DDTs)未检出; 沉积物中总HCHs的质量比为2.87~5.56 ng/g, 均值为4.34 ng/g; 条子河水和沉积物中PAHs的含量均为自上游至下游递减, 且枯水期>平水期>春汛期>丰水期; 条子河水中HCHs的质量浓度自上游至下游递增, 且丰水期>春汛期>平水期>枯水期, 沉积物中HCHs的质量比自上游至下游递减, 且枯水期>平水期>春汛期>丰水期; 条子河中的PAHs主要来源于煤炭燃烧和交通燃烧, HCHs主要来源于农药林丹的使用.  相似文献   

7.
西江水体中多环芳烃的分布特征   总被引:1,自引:0,他引:1  
采用玻璃纤维滤膜过滤分离西江水柱样品,并根据气相色谱一质谱联用(GC-MS)对多环芳烃(PAHs)进行定量分析.结果表明,溶解相和颗粒相中多环芳烃的浓度分别为21.7~138 ng·L-1和40.9~238μg·kg-1.水体中多环芳烃的总含量(颗粒相及溶解相),洪水期(43.9~116.9ng·L-1)大于枯水期(25.2~34.1 ng·L-1).从PAHs组成特点来看,溶解相以3环的PAHs为主,占总组分的80%;而颗粒相以3环、4环的PAHs为主,分别占总组分的48%和41%.西江水体多环芳烃的总含量,高于欧洲一些低污染水域,但低于国内一些主要河流.  相似文献   

8.
为了解辽河典型支流四平市条子河表层沉积物中多环芳烃(PAHs)的污染状况,选取10个采样点采集表层沉积物样品,测定了其中的PAHs质量浓度、分析了其空间分布特征、应用多种方法解析了PAHs的来源并对其生态风险进行了评价。结果表明,条子河表层沉积物中PAHs质量浓度范围为601.3~2 906.2 ng/g,算数平均值为1 527.3 ng/g,所检出的PAHs的环数均为2-4环化合物,且以4环为主,占PAHs的63.6%~71.5%。来源解析表明条子河表层沉积物中的PAHs主要来源于煤和生物质的燃烧。生态风险评价结果显示,3环的苊和芴在各个采样点可能产生一定的负面毒性效应;位于条子河干流、临近四平市城区采样点的沉积物中PAHs对生物可能产生中低毒性;而其他采样点存在综合生态风险的可能性很小。  相似文献   

9.
根据浑河水环境中多环芳烃的监测数据,运用主成分分析法(Principal Component Analysis)对水体中16种多环芳烃的分布情况和来源进行了分析.通过因子得分对浑河14个断面污染状况进行综合排序,发现七台子、七间房PAHs污染最严重,主要以交通和炼焦源为主;其次为东洲河,主要为石油类产品和化石燃料中低温燃烧源.而作为沈阳市的污水排放渠的于台断面中多环芳烃污染较轻.表明浑河流域水体中多环芳烃污染来源于面源污染,主要由大气沉降、路面上残留的汽车燃烧产物被雨水冲刷后带入水体所致.  相似文献   

10.
以辽河流域为研究对象,选择多环芳烃、全氟化合物、多氯联苯、有机氯农药四类常见持久性有机污染物(Persistent Organic Pollutants)为目标物,归纳总结了上述污染物在辽河流域中的含量,得到多环芳烃在辽河流域水体和沉积物中的含量分别为94.78-2931.62ng/L,46-1167ng/g,全氟化合物在水体和沉积物中含量分别为0.38-127.88ng/L,1.72-10.44ng/g,多氯联苯在水体中含量小于115.3ng/L,有机氯农药在水体中含量为48-87.78ng/L;阐述上述污染物在辽河流域分布特征;分析了其潜在来源为工业、农业和生活污水,并对未来辽河流域持久性有机污染物的研究提出建议。  相似文献   

11.
贵州百花湖水体中多环芳烃的环境演化   总被引:1,自引:0,他引:1  
本论文以美国环保署(EPA)公布优控的16种多环芳烃作为目标污染物,对百花湖水体中多环芳烃的含量及分布特征进行了分析。结果表明:水样中16种多环芳烃总量的浓度范围为0.4213-0.7606μ/L,水样中16种PAHs中低环数的2环、3环、4环占绝对优势,百花湖已受到多环芳烃的轻度污染。  相似文献   

12.
选用GC-MS分析官厅水库水体中16种多环芳烃(PAHs)的残留情况,并探讨该区域水体PAHs残留特征及其可能的健康风险.研究结果表明,12种PAHs均有不同程度的检出,PAHs总质量浓度为66.20~368.35ng·L-1,与国内其他地区相比,残留水平较低.利用健康风险评价模型对水体中PAHs所致健康风险的评价结果表明,水体中的PAHs的非致癌风险在5.84×10-13~4.90×10-12a-1之间,致癌风险低于2.89×10-9a-1,均低于国际辐射防护委员会推荐水平,目前研究区水体中PAHs类污染物对人体产生的健康风险处于较低水平.  相似文献   

13.
对2011年11月—2013年1月在砣矶岛国家大气背景站采集的75个大流量PM2.5样品的多环芳烃含量和组成进行分析。结果表明,砣矶岛16种优控多环芳烃(Σ16PAHs)的总质量浓度为4.7~41 ng/m3(平均(17±10)ng/m3),季节上表现为冷季高、暖季低的变化趋势。综合气流轨迹分析、分子标志物、特征化合物比值、潜在源贡献指数分析等方法发现,夏季山东半岛的生物质燃烧是主要污染源;冷季主要受京津冀及周边地区的燃煤排放和复合污染输出的共同影响。砣矶岛PAHs的总毒性当量(Ba Peq)在0.54~8.2 ng/m3之间,平均水平为2.8 ng/m3,39%以上的样品超过国标阈值,说明环渤海地区PAHs健康风险存在区域性。  相似文献   

14.
西安冬季可吸入颗粒物中多环芳烃的组成及风险评价   总被引:3,自引:0,他引:3  
对2006-12-19~至2007-01-15采集的西安冬季昼夜大气可吸入颗粒物(PM_(10))样品,利用气相色谱-质谱联用仪(GS-MS)分析检测出美国EPA优先控制的12种多环芳烃(PAHs),结果显示,西安冬季大气PM_(10)中白天与夜晚总的PAHS平均质量浓度分别为312.0 ng·m~(-3)和346.0 ng·m~(-3),且PM_(10)中主要以4~5环的多环芳烃为主.采用苯并(a)芘(BaP)等效质量浓度(BaPE)评价PAHS的污染状况,结果表明,苯并(a)芘(BaP)白天及晚上的平均质量浓度分别为30.0 ng·m~(-3)和34.8 ng/m~3,计算得出西安冬季白天与晚上的BaPE平均值分别为45.3 ng·m~(-3)、51.0 ng·m~(-3),含量超过国家标准4.5倍以上.  相似文献   

15.
以典型炼油废水为研究对象,通过采样监测,结合炼油工艺特点分析了多环芳烃的产排和消减特征. 研究表明:炼油各生产装置废水中多环芳烃的质量浓度、组分和排放量差异较大. 二次加工工段的催化裂化装置和延迟焦化装置是废水中多环芳烃产生和排放的主要污染源,质量浓度分别为1076~1179、87~681g/L,排放量占全厂排放总量的54%和27%. 生产装置与污水处理单元废水中多环芳烃的组分分布呈现一致性,主要以芴、二氢苊和菲等低环数芳烃为主, 二~三环芳烃质量浓度占总组分质量浓度的83%. 炼油废水中多环芳烃去除率沿处理流程逐级递减,由40%降至7.5%. 高环数芳烃的去除率达95%,明显高于低环数芳烃的90%的去除率.  相似文献   

16.
汉江水体和沉积物中全氟化合物的风险评估   总被引:2,自引:0,他引:2  
采集汉江旱季和雨季的水样和沉积物,应用超高效液相色谱–三重四级杆质谱,对其中的11种全氟化合物(PFCs)进行检测,研究该区域全氟化合物的污染状况。结果表明,11种全氟化合物都有不同程度的检出,旱季和雨季水样中∑PFCs浓度分别为0.3~23.04和0.16~19.68 ng/L,沉积物中∑PFCs浓度分别为0~55.1和0.99~85.07 ng/g。水样总浓度的最高值出现在汉江汇入长江处的武汉,且武汉采样点的全氟辛酸(PFOA)浓度最高,旱、雨季分别达到22.52和12.52 ng/L。沉积物中总浓度最高值出现在陶岔,且以全氟庚酸(PFHp A)和全氟己酸(PFHx A)为主,沉积物中组分组成的季节差异不大。采用实际检测到的水样中PFOA、全氟辛烷磺酸盐(PFOS)、全氟壬酸(PFNA)、PFHx A和全氟葵酸(PFDA)的浓度以及沉积物中PFOA和PFOS的浓度,运用熵值法,对汉江流域进行全氟化合物污染的风险评估,结果表明,水体和沉积物中的浓度均未达到对生态环境具有风险的水平。  相似文献   

17.
药物和个人护理品作为新型污染物,已引起广泛关注.本文以东江下游惠州段为研究对象,系统分析了类固醇类消炎药(水杨酸、布洛芬、双氯芬酸、甲芬那酸和萘普生)和血脂调节剂(氯贝酸、吉非罗齐)等酸性药物的分布特征及其来源,并对其进行了风险评价.结果表明,除氯贝酸和布洛芬检出率为90%和80%外,其余5种化合物均全部检出.水杨酸、氯贝酸、布洛芬、吉非罗齐、萘普生、甲芬那酸和双氯芬酸的质量浓度范围分别为:95.50~13 750ng/L、ND-50.60ng/L、ND-67.60ng/L、13.50~21.50ng/L、13.40~43ng/L.60、14.00~17.70ng/L和13.50~28.00ng/L,平均值分别为1 698ng/L、17.90ng/L、26.27ng/L、17.12ng/L、27.82ng/L、16.27ng/L和20.24ng/L.在分布特征上,淡水河支流从上游到下游逐渐升高,汇入西枝江前有所降低;除水杨酸外,西枝江中酸性药物含量低于淡水河;西枝江汇入东江后,药物浓度明显增加.水生态风险分析显示,东江下游惠州段的水杨酸和双氯芬酸对水生生物有中等风险,其余化合物对水生生物有低风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号