共查询到17条相似文献,搜索用时 31 毫秒
1.
赵平 《西南师范大学学报(自然科学版)》2012,37(10):41-44
设PSn-是[n]上的降序部分变换半群.考虑半群PK-(n,r)={α∈PSn-:|im(α)|≤r}其中3≤r≤n-1.证明了半群PK-(n,r)是由秩为r的幂等元生成的,且它的秩和幂等元秩都是S(n+1,r+1). 相似文献
2.
设PCn是有限链[n]上的降序且保序部分变换半群
. 对任意的3≤r≤n-1, 考虑半群PC(n,r)={α∈PCn: 〖JB(|〗Im(α)〖JB)|〗≤r}
的秩和幂等元秩, 证明了半群PC(n,r)是由秩为r的幂等元生成的, 并得到了PC(n,r)的秩和
幂等元秩均为∑〖DD(〗n〖〗k=r〖DD)〗〖JB((〗〖HL(1〗nk〖HL)〗〖JB))〗〖JB((
〗〖HL(1〗k-1r-1〖HL)〗〖JB))〗. 相似文献
. 对任意的3≤r≤n-1, 考虑半群PC(n,r)={α∈PCn: 〖JB(|〗Im(α)〖JB)|〗≤r}
的秩和幂等元秩, 证明了半群PC(n,r)是由秩为r的幂等元生成的, 并得到了PC(n,r)的秩和
幂等元秩均为∑〖DD(〗n〖〗k=r〖DD)〗〖JB((〗〖HL(1〗nk〖HL)〗〖JB))〗〖JB((
〗〖HL(1〗k-1r-1〖HL)〗〖JB))〗. 相似文献
3.
《贵州师范大学学报(自然科学版)》2016,(5):57-59
设[n]={1,,2,…,n},Cn是[n]上的保序且降序变换半群,k∈[n],令Cn(k)={α∈Cn:kα=k},则Cn(k)是Cn的子半群。对任意的1≤r≤n-1,考虑Cn,r(k)={α∈Cn(k):|im(α)|≤r}的秩和幂等元秩,证明了半群Cn,r(k)是由秩为r的幂等元生成的,并得到了Cn,r(k)的秩和幂等元秩均为Cr-2n-2。 相似文献
4.
降序且保序有限部分变换半群的幂等元秩 总被引:1,自引:1,他引:0
设PCn是[n]上的降序且保序有限部分变换半群。对n≥3, 证明了半群PCn是由秩为n-1的幂等元生成的, 且它的秩和幂等元秩都是2n-1。 相似文献
5.
李先崇 《西南师范大学学报(自然科学版)》2013,38(10):009-012
设POn是[n]上的部分保序变换半群.考虑半群POn(k)={α∈POn:?x∈dom(α),x≤k?xα≤k},其中1≤k≤n-1.证明了半群POn(k)是由秩为n-1的幂等元生成的,且它的幂等元秩和秩分别为3n-3和2n-1 相似文献
6.
设SPS-n是[n]上的严格降序部分变换半群.对n≥5和3≤r≤n-2,证明了半群SPK-(n,r)={α∈SPS-n:︱im(α)︱≤r}是幂等元生成的,且秩和幂等秩都为(r+1)S(n,r+1). 相似文献
7.
设H n是自然序集X n={1,2,3,…,n}(n≥3)上的保降序且保序有限奇异变换半群,记H(n,r)={α∈H n:|Imα|≤r}为半群H n的双边星理想.对1≤r≤n-1,刻划了H(n,r)是由秩为r的幂等元生成的且它的秩和幂等元秩都等于Cr-1n-1.进一步证明了当l=r时,r(H(n,r),H(n,l))=0且当1≤lr时,r(H(n,r),H(n,l))=Cr-1n-1. 相似文献
8.
设自然数n≥3, PHn是自然序集Xn={1,2,3,…,n}上的保降序且保序有限部分奇异变换半群, 对0≤r≤n-1时, 记P(n,r)={α∈PHn:|imα|≤r} 为半群PHn的双边星理想。通过对其幂等元的分析, 分别刻划了半群P(n,r)的极小幂等生成集, 秩和幂等元秩。进一步证明了当0≤l≤r时, 半群P(n,r)关于它的每个星理想P(n,l)的相关秩。 相似文献
9.
引入了保升序且保序有限部分——奇异变换半群,通过对其(0,1)-平方幂等元和星格林关系的分析,分别获得了半群G(n,r)唯一的极小(0,1)-平方幂等元生成集,秩和(0,1)-平方幂等元秩.进一步确定了当0≤l≤r时,半群G(n,r)关于其星理想G(n,l)的相关秩. 相似文献
10.
Xn是包含n个元素的全序集,SPn-是Xn上的降序严格部分变换半群,对4 n和2≤r≤n-2,证明了半群SK-(n,r)={α∈SPn-∶|Imα|≤r}是幂等元生成的,并且是由顶端Jr*的(r+1)S(n,r+1)个幂等元生成. 相似文献
11.
《山东大学学报(理学版)》2025,60(5)
设P On是Xn={1,2,…,n}上的保序部分变换半群,对任意1≤r≤n, 考虑集合P On,r={α∈P On:xα=x,∠x∈dom(α)∩{1,2,…,r}},易验证P On,r是P On的子半群。证明了半群P On,r是由幂等元生成, 并得到了半群P On,r的幂等元秩为3n-2r-1。 相似文献
12.
设POn是[n]上的保序部分变换半群.对n≥3,证明了半群POn的秩为n-1的平方幂等元的个数为4n-6,同时,还证明了半群POn是秩为n-1的平方幂等元生成的,且其秩为2n-1. 相似文献
13.
设Jn为有限集X={1,2,…,n}上的全变换半群,Sn为Jn中所有奇异变换构成的子半群,记Sn-={f∈Sn:x∈X,f(x)≤x},Qn={f∈Jn:x,y∈X,x≤y f(x)≤f(y)},那么Sn-与Qn都是Tn的子半群,令Hn=S-n∩Qn,则Hn也是Jn的一个子半群,Hn的某些性质,诸如Green关系,Green星关系,秩和幂等秩都进行了研究,还证明了Hn是幂等元生成的,且可由J*中的n-1个幂等元生成. 相似文献
14.
罗永贵 《吉林师范大学学报(自然科学版)》2014,(3):87-89
设自然数n≥3,Wn-是有限链[n]上具有降序性的保序且压缩奇异变换半群,对任意的r(1≤r≤n-1),记K*-(n,r)={α∈W-n:|Imα|≤r}为半群W-n的双边星理想.通过对秩为r的元素和星格林关系的分析,确定了当1≤lr时,半群K*-(n,r)关于其星理想K*-(n,l)的相关秩. 相似文献
15.
16.
17.
设On是[n](n≥3)上的保序变换半群,证明了半群On的顶端Jn-1中平方幂等元个数为2n-4。 相似文献