首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在图G与不相交图序列hn=(Hi)i∈{0,1,…,n-1}的广义字典积G[hn]中,若Hi≌H,i=0,1,…,n-1,则将G[hn]记为G[H],其中G[H]是G与H的字典积。图G的点可区别边染色所需最少的颜色数称为G的点可区别边色数,记为χ'vd(G)。对任一满足χ'vd(G)=Δ(G)的图G,给出了参数χ'vd(G[hn])的两个上界,并证明这些上界是可达到的,其中hn=(Hi)i∈{0,1,…,n-1}中的每一个Hi均为m阶简单图。另外证明了:如果χ'vd(G)=Δ(G),χ'vd(H)=Δ(H)且Δ(G[H])=Δ(H[G]),则χ'vd(G[H])=χ'vd(H[G]),其中G与H分别为n阶与m阶的简单图。  相似文献   

2.
若干积图的点可区别边染色   总被引:2,自引:0,他引:2  
证明了:(1)两个n(n2)阶完全图的积图的点可区别边色数为2n. (2)对阶至少是3的完全图Kn,若χ′vd(G)=Δ(G),则χ′vd(G×Kn)=n+Δ(G).(3)若χ′vd(Gi)=Δ(Gi),i=1,2,则χ′vd(G1×G2)=Δ(G1)+Δ(G2).  相似文献   

3.
研究了当G为n阶轮,或扇,或星时,字典积图G[H]的Mycielski图M(G[H])的点可区别全染色,其中n≥6且H为m阶简单图.得到了以下结果:①若H为m阶完全图,则M(G[H])的点可区别全色数为2mn;②若H为m阶路,其中m≥4,则M(G[H])的点可区别全色数为2(n-1)m+6.  相似文献   

4.
简单图G的正常边染色f,若对于任意u,v∈V(G),有C(u)≠C(v),称,是图G的点可区别边染色,其中C(u)={f(uv)│uv∈E(G)}。若满足││Ei│—│Ej││≤1(i,j=1,2,…,k),其中任意e∈Ei,f(e)=i(i=1,2,…,k),称f是图G的点可区别均匀边染色。讨论了若干图的Mycielski图的点可区别均匀边染色。  相似文献   

5.
马强  马刚  田富鹏 《甘肃科技》2012,28(9):64-66
对一个正常的边染色满足不同点的点所关联边色集合不同,称为点可区别边染色(VDEC),其所用最少染色数称为点可区别边色数.就此用构造法研究了一些Double图的点可区别边染色,得到了星、扇和轮的Double图的点可区别边色数,验证了它们满足点可区别边染色猜想(VDECC).  相似文献   

6.
给出了最小度至少是2的图G的k重Mycielski图M~k(G)(其中k为正整数)的点可区别全色数的上界.  相似文献   

7.
通过研究若干n重积图的边色数及点可区别边色数,就可证明■(Gi)=△(Gi),i=1,2,L,n,则∑=′×××=■△(G_i)其中G1×G2×L×Gn为G1,G2,L,Gn的n重积图.  相似文献   

8.
证明了,任意正整数k≥2,存在点可区别边色数为2k+1的k+1-正则图;任意正整数m≥4,存在点可区别边色数为m的偶图.  相似文献   

9.
如果图G的一个正常全染色满足相邻点的色集合不同,且任意两种颜色所染的元素的数目之差的绝对值不超过1,则称为邻点可区别均匀全染色(AVDETC),其所用的最少颜色数称为邻点可区别均匀全色数。本文研究了路、圈、星、扇的Mycielski图的邻点可区别均匀全染色,利用构造法和匹配法给出了它们的邻点可区别全色数的确切值,验证了它们满足邻点可区别均匀全染色猜想(AVDETCC)。  相似文献   

10.
对图G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该图的点可区域边色数。本文得到了路与星的联图的点可区别边色数。  相似文献   

11.
研究了一些Mycielski图的点可区别均匀全染色(VDETC), 利用构造法给出了路、圈、星和扇的Mycielski图的点可区别均匀全色数, 验证了它们满足点可区别均匀全染色猜想(VDETCC)。  相似文献   

12.
研究了路、圈、扇、轮的Mycielski图的邻点可区别的V-全染色.根据Mycielski图的构造特征,利用构造函数法,构造了一个从点边集V(G)∪E(G)到色集合{1,2,…,k}的函数,给出了一种染色方案,得到了路、圈、扇、轮的Mycielski图的邻点可区别的V-全色数.?更多还原  相似文献   

13.
给出了一个简单图G的k重Mycielski图Mk(G)(其中k为正整数)的邻点可区别全色数的上界,得到了圈、星、轮、扇的k重Mycielski图的邻点可区别全色数.  相似文献   

14.
讨论了Mycielski图M(Pn)、M(Cn)、M(Sn)、M(Fn)、M(Wn)的邻点扩展和可区别全染色问题.根据图形的结构特点,采用函数构造法,得到了这几类图的邻点扩展和可区别全色数,同时证明NESD猜想对上述5种My-cielski图是成立的.  相似文献   

15.
定义了一类2维广义格子图H2(G, n, m;k1, k2),并从图的结构出发,利用构造染色的方法,得到了图H2(K4, n, m;4,4)的邻点可区别边色数。  相似文献   

16.
图G的一个邻点可区别Ⅰ-均匀全染色是指对图G的邻点可区别的一个Ⅰ-全染色f,若f还满足||T_i|-|T_j||≤1(i≠j),其中T_i=V_i∪E_i={v|v∈V(G),f(v)=i}∪{e|e∈E(G),f(e)=i},则称f为图G的一个邻点可区别Ⅰ-均匀全染色,而图G的邻点可区别Ⅰ-均匀全染色中所用的最少颜色数称为图G的邻点可区别Ⅰ-均匀全色数.通过函数构造法,得到了M(Pn)、M(Cn)、M(Sn)的邻点可区别Ⅰ-均匀全色数,并且满足猜想.  相似文献   

17.
定义了一类2维广义格子图H2(G,n,m;k1,k2),且通过从图的结构出发,利用构造染色的方法,得到了图H2(Kp,p,n,m;p,p)的邻点可区别边色数.  相似文献   

18.
几类弱积图的邻点可区别一般边染色   总被引:1,自引:0,他引:1  
讨论了弱积图邻点可区别一般边染色,给出了P2n×Km,C2n×C2m,C2n+1×C2m+1,C2n+1×Km的邻点可区别一般边色数,得到了当G和H都无孤立边且色数均至少为3时,G×H邻点可区别一般边色数至少为3的结论.  相似文献   

19.
讨论并得到了路、圈、完全图、星、扇、轮的Mycielski图的点可区别全色数.  相似文献   

20.
根据图的邻点可区别无圈边染色的定义,利用构造的方法讨论联图Pm∨Wn、Pm∨Fn、Pm∨Pn、Pm∨Sn和Cm,n的邻点可区别无圈边染色,并给出它们的邻点可区别无圈边色数及其证明,且均满足图的邻点可区别无圈边染色猜想.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号