首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
研究了烧结温度对掺质量分数为0.5 % 的TiO2的Ba4.2(Sm0.8Nd0.17Bi0.03)9.2Ti18O54(简称BSNBT)陶瓷材料微观结构及其微波介电性能的影响.采用XRD,场发射扫描电子显微镜(FE-SEM)和EPMA分析了陶瓷材料的微观结构.结果表明,当烧结温度高于1 340 ℃时陶瓷样品中出现第二相BaTi4O9.随着烧结温度的升高,材料的介电常数εr和Qf值(品质因数和谐振频率的乘积)先增大后减小,谐振频率温度系数逐渐增大.当烧结温度为1 340 ℃时,εr和Qf值均达到最大,εr=80.5,Qf=9 009 GHz(在3.5 GHz下),此时谐振频率温度系数τf=6.5×10-6/℃.  相似文献   

2.
研究了烧结温度对掺质量分数为0.5%的TiO2的Ba4.2(Sm0.8Nd0.17Bi0.03)9.2Ti18O54(简称BSNBT)陶瓷材料微观结构及其微波介电性能的影响.采用XRD,场发射扫描电子显微镜(FE-SEM)和EPMA分析了陶瓷材料的微观结构.结果表明,当烧结温度高于1 340℃时陶瓷样品中出现第二相BaTi4O9.随着烧结温度的升高,材料的介电常数rε和Qf值(品质因数和谐振频率的乘积)先增大后减小,谐振频率温度系数逐渐增大.当烧结温度为1 340℃时,rε和Qf值均达到最大,rε=80.5,Qf=9 009 GHz(在3.5 GHz下),此时谐振频率温度系数fτ=6.5×10-6/℃.  相似文献   

3.
微波电路的小型化、集成化和高可靠性对微波陶瓷提出了特殊的要求.作者在(Zr0.8Sn0.2)TiO4主相系统中,单一添加ZnO或复合添加ZnO MoO,考察了不同含量的上述改性添加剂对Zr0.8Sn0.2TiO4陶瓷显微结构和微波介电性能的影响.主相合成条件为1100℃下3h;粉碎、成型后样品在1240℃~1400℃下3h烧成.在1GHz下用谐振腔法测量了材料的介电常数和Qf值,并在1M下测量了频率温度系数τf.采用SEM对样品进行形貌观察及能谱分析,并进行了XRD表征.研究结果表明,单独添加少量的ZnO(1%)可以降低烧结温度,但Qf值较低,与复合添加样品的显微结构相比晶粒不均匀.复合添加MoO3(0.25%)和ZnO(1%)的(Zr0.8Sn0.2)TiO4陶瓷Qf值由49430GHz提高到61210GHz,同时介电常数εr和谐振频率温度系数τf基本保持不变.  相似文献   

4.
采用传统固相反应法制备Ba_(4.2)Nd_(9.2)Ti_(18-x)Zr_xO_(54)(x=0、0.25、0.5、1、1.5)(BNTZ)微波介质陶瓷。运用X线衍射仪(XRD)和扫描电子显微镜(SEM)表征BNTZ陶瓷的相组成和微观结构。结果表明:BNTZ陶瓷的主晶相为Ba Nd2Ti4O12(JCPDS No.44-0061),随着掺杂量的增加,出现微量的Nd2Ti2O7烧绿石相。当x增加时,陶瓷的体积密度、介电常数(εr)和谐振频率温度系数(τf)均降低。而BNTZ微波介质陶瓷的Qf(Q为品质因子,f为频率)值先增加后降低,并且当x≥1时,陶瓷的Qf下降剧烈。当x=0.25时,Ba_(4.2)Nd_(9.2)Ti_(18-x)Zr_xO_(54)陶瓷样品在1 300℃下烧结2h,具有优良的微波介电性能,εr=82.83,Qf=9.009 THz,τf=56.7×10-6℃-1。  相似文献   

5.
采用传统固相反应法制备x Ca Ti O3-(1-x)La Al O3(0.55≤x≤0.69)(CTLA)陶瓷,研究CTLA陶瓷的物相,微观结构及微波介电性能.结果表明,烧结温度在1 400℃时,陶瓷的微波性能最佳,介电常数在35~47之间,Q×f≥35 000 GHz.随着Ca Ti O3含量的增大,频率温度系数趋零,当x=0.67时,陶瓷具有最佳的微波性能:εr=45,Q×f=36 684 GHz,τf=6.02×10-6/℃.1  相似文献   

6.
固相法合成ZnNb2O6微波介质陶瓷的结构与性能   总被引:3,自引:0,他引:3  
通过固相法合成了ZnNb2O6微波介质陶瓷,利用XRD和SEM等测试技术对其晶体结构和显微结构进行了系统研究,通过网络分析仪对材料的微波介电性能进行了测试.研究结果表明:预烧温度为800℃时就已经合成ZnNb2O6相,合成温度和保温时间对材料结构与性能有较大影响.预烧合成温度的升高和烧结时保温时间的增加,都会促使陶瓷显微结构中晶粒尺寸的增大.随着晶粒尺寸的增大,材料的Q×f值和εr显著增加,而材料的谐振频率温度系数明显向负方向增大.  相似文献   

7.
采用传统的固相合成法制备Ba3Ti5Nb6-xTaxO28(0≤x≤0.67)微波介质陶瓷,研究了Ta对Ba3Ti5Nb6O28陶瓷结构与微波介电性能的影响.随Ta含量的增加,Ba3Ti5Nb6-xTaxO28陶瓷先为Ba3Ti5Nb6O28单相;当x增大到0.5时,则出现了第二相Ba3Ti4Nb4O21.随Ta含量增加,Ba3Ti5Nb6-xTaxO28陶瓷的介电常数变化较小,Qf值先明显升高后下降,而谐振频率温度系数τf逐渐增大.x=0.16时,获得了介电性能优异的Ba3Ti5Nb6-xTaxO28陶瓷,介电性能为:ε=37.9,Qf=2.8137×104GHz,τf=-6.0×10-6℃-1.  相似文献   

8.
应用常规氧化物混合法,制备了Ca[(Li1/3Ta2/3)1-xTix](CLTT)O3-δ(0.50≥x≥0)微波介质陶瓷.X射线衍射表明,CLTT是具有正交相结构的连续固溶体,而且B位Li和Ta形成了1∶2的有序化结构.用Ti4 部分替换Li1 和Ta5 稳定了钙钛矿相,破坏了1∶2有序化结构,促进了Ca[(Li1/3Ta2/3)1-xTix]O3-δ(x=0.20,0.30)陶瓷的晶粒生长.当x组分从0增加到0.50时,微波介电常数ε从24增至48,品质因数Qf值从42000降至11000GHz,谐振频率温度系数τf也由负变正.含B2O3的Ca[(Li1/3Ta2/3)0.7Ti0.3]O3-δ陶瓷在1050℃烧结,可获得ε=35,Qf=22800GHz,τf=-4 1×10-6/℃的新型微波介质材料.  相似文献   

9.
ZnO-MoO3 添加(Zr0.8Sn0.2)TiO4微波陶瓷的介电性能   总被引:3,自引:0,他引:3  
微波电路的小型化、集成化和高可靠性对微波陶瓷提出了特殊的要求,作者在(Zr0.8Sn0.2)TiO4主相系统中,单一添加ZnO或复合添加ZnO-MoO,考察了不同含量的上述改性添加剂对Zr0.8Sn0.2TiO4陶瓷显微结构和微波介电性能的影响,主相合成条件为1100℃下3h;粉碎、成型后样品在1240℃~1400℃下3h烧成,在1GHz下用谐振腔法测量了材料的介电常数和Qf值,并在1M下测量了频率温度系数τf,采用SEM对样品进行形貌观察及能谱分析,并进行了XRD表征、研究结果表明,单独添加少量的ZnO(1%)可以降低烧结温度,但Qf值较低,与复合添加样品的显微结构相比晶粒不均匀、复合添加MoO3(0.25%)和ZnO(1%)的(Zr0.8Sn0.2)TiO4陶瓷Qf值由49.430GHz提高到61 210GHz,同时介电常数ετ和谐振频率温度系数τf基本保持不变。  相似文献   

10.
研究了A位Nd3 取代对(Ca1-xNdx)[(Li1/3Nb2/3)0.95Zr0.15]3 δ(0.0≤x≤0.2,CNLNZ)陶瓷的微观结构及微波介电特性的影响.当0.00≤x≤0.03时,体系为单一钙钛矿相,随Nd3 摩尔分数的增加,品质因素的值先增大,然后因B位l∶2有序度在x=0.02处下降而开始减小.分析了谐振频率温度系数随容忍因子的变化关系.当x=0.03时,陶瓷微波介电性能最佳:相对介电常数为32.7,品质因素为15 880 GHz,谐振频率温度系数为-6.4×10-6/℃.  相似文献   

11.
从电磁场方程出发,推导出用多极理论计算轴对称介质加载微波谐振腔谐振频率的本征值方程,给出用多极理论分析轴对称介质加载微波谐振腔的基本原理和计算过程。三个工程实例的计算结果表明:用多极理论分析轴对称介质加载微波谐振腔,不仅具有较高的计算精度,而且可以很方便地应用于各类轴对称介质加载微波谐振腔对称模式本征值的分析与计算,多极理论是分析轴对称介质加载微波谐振腔谐振频率的一种有效方法。  相似文献   

12.
研究了添加B2O3的Ca[(Li1/3Nb2/3)1-xTi3x]O3-δ(0≤x≤0.2)(CLNT)陶瓷的微波介电性能.在整个组分范围内检测到单一的正交相.随着x从0增加到0.2,介电常数(k)将从30增至89,Qf值则下降到3820GHz,谐振频率温度系数(TCF)从-16×10-6/℃增加到22.4×10-6/℃.当B2O3添加1.0%时,CLNT陶瓷的烧结温度可以从1150℃降至970℃而不降低微波介电性能.940℃烧结后,x=0.1试样的微波性能为k=50,Qf=6500GHz,温度系数为-7.6×10-6/℃.  相似文献   

13.
研究了B2O3对陶瓷的烧结性能及微波介电特性的影响.结果表明B2O3的掺人能使Ca[(Li1/3Nb2/3)0.95Zr0.15]3 δ(CLNZ)陶瓷体系的烧结温度降低160~210℃,谐振频率温度系数τf随B2O3掺入量增加,但烧结温度对其没有明显影响.在990℃.掺入质量分数为1.0 %的B2O3,陶瓷微波介电性能最佳:εr=33.1,Qf=13 700 GHz,τf=-6.8×10-6/℃;而且,掺入2.0%的B2O3,在940℃烧结4 h,能获得介电性能良好的陶瓷,其εr=31.4,Qf=8 700 GHz,τf=-5.2×10-6/℃.  相似文献   

14.
介质谐振器具有体积小、重量轻、Q 值高、价格低廉的优点,特别是随着低损耗、高温度稳定性介质材料的发展,它已在很多场合代替了传统的金属腔.用介质谐振器制作滤波器、鉴频器和振荡器,其谐振频率及与电路的耦合系数是两个最重要的参数.本文采用集总参数耦合电路模型,分析计算了圆柱介质谐振器 TE_(01δ)模与悬置微带及单侧鳍线的耦合系数.1 理论分析介质谐振器与各种集成传输线的耦合,是谐振器中的场与传输线的场相互作用的结果(图1(a)).本文把介质谐振器的 TE_(01δ)模等效为磁耦极子,它与传输线盼耦合也就可以转化  相似文献   

15.
作者研制了一种低成本、易制造的电子自旋共振(ESR)高温腔。文中先叙述谐振腔的设计依据及其结构,然后对实验结果进行讨论,样品的温度可达700℃左右,仍能保持腔体的谐振频率和Q值稳定,谱线形状符合要求。  相似文献   

16.
微波均衡器中微调螺钉的作用研究   总被引:1,自引:0,他引:1  
微波幅度均衡器是由吸收型同轴谐振腔作为其基本结构单元多级级联实现,谐振频率主要通过改变腔长和探针插入深度来调节,同时改变微调螺钉也能影响谐振频率.论文从理论上阐述了微调螺钉对同轴谐振腔谐振频率的影响程度,在电场占优的地方,螺钉插入越深,降低谐振频率;反之,在磁场占优的地方,螺钉插入越深,增大谐振频率.并利用HFSS软件仿真子结构谐振腔的电磁场分布,从而确定微调螺钉的位置.根据微调螺钉对谐振频率影响的规律,采用补偿调试的方法还能减小温度对谐振频率的影响,同时,微调螺钉还能抑制寄生模的产生.  相似文献   

17.
通过改变微波烧结温度和保温时间,优化Ca( Sm0.5 Nb0.5) O3 (CSN)陶瓷的微波烧结工艺,用X线衍射仪(XRD)、扫描电镜(SEM)和微波网络分析仪等对试样进行表征.从相组成、显微结构及微波介电性能等方面对微波烧结试样与常规烧结试样进行对比分析.结果表明:微波烧结可大幅降低CSN的烧结温度,促进试样的致密化,其物相组成和传统烧结试样无明显差别;微波烧结还可以改善CSN陶瓷的微波介电性能,在1 375℃微波烧结30 min可获得优异的微波介电性能,介电常数(εr)=20.08,品质因数(Q×f)=37.03 THz,谐振频率温度系数(Tf)=-10.2×10-6℃-1.  相似文献   

18.
采用一步法制备了Li_2Mg_(2.95)M_(0.05)Ti O_6(M为Mg,Zn,Co,Ca)型微波介质陶瓷,讨论了掺杂离子种类对陶瓷烧结行为、组成、微观结构和微波介电性能的影响.结果表明:所得陶瓷样品的主晶相为Li_2Mg_3Ti O_6,掺加Mg~(2+)的样品有少量Mg_2Ti O_4杂质相;掺加Ca~(2+)的样品可形成介电常数(ε_r)高达170,温度系数(τ_f)达+800×10~(-6)/℃且能够与主晶相共存形成稳定复合体系的Ca Ti O_3;掺Ca~(2+)的样品在1 370℃保温6 h,可得到介电常数(ε_r)为16.7,品质因数(Q×f)为83 900 GHz,谐振温度系数(τ_f)接近于0×10~(-6)/℃的最佳介电性能的样品.  相似文献   

19.
用传统固相法制备了Ba(Zn0.5W0.5)O3掺杂Ba[(Zn0.2Co0.8)0.33Nb0.66]O3微波介质陶瓷,通过XRD和HP8720ES网络分析仪分别对其晶体结构和微波介电性能进行了研究.实验结果表明,少量的Ba(Zn0.5W0.5)O3可以把体系的烧结温度从1430℃降低到1380℃,促进了烧结.在烧结过程中Zn的挥发会促使掺入的Ba(Zn0.5W0.5)O3转变成BaWO4,以第二相的形式存在于陶瓷样品表面,而内部并没有明显的第二相生成.这说明烧结过程中Zn的扩散很有限.在微波介电性能方面,随着Ba(Zn0.5W0.5)O3的掺杂量的增加,Ba[(Zn0.2Co0.8)0.33Nb0.66]O3的相对介电常数(εr)略有减小,谐振频率的温度系数(Tf)略有增大,而其Q×f值则在测量误差范围内波动不大,说明掺入少量的Ba(Zn0.5W0.5)O3对Ba[(Zn0.2Co0.8)0.33Nb0.66]O3在微波频率下的品质因数影响不大.  相似文献   

20.
提出了一种基于可调谐多波长光纤激光器和受激布里渊散射(SBS)的中心频率可调谐的复系数多抽头微波光子滤波器.滤波器的复系数由SBS相移器的相移产生,通过改变SBS的泵浦功率即可改变相移的大小,实现滤波器的中心频率连续可调,同时保证滤波器的频率响应特性不变.滤波器的频率选择性可通过减小载波的波长间隔得到改善.通过调节多波长光纤激光器的相邻波长间隔使品质因数(Q)提高了15.922 1,微波光子滤波器(MPF)的中心频率实现了6.402GHz范围内的连续调谐.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号