共查询到17条相似文献,搜索用时 62 毫秒
1.
本文介绍了Legendre小波的性质,并利用它们将线性Fredholm积分-微分方程组转化为代数方程组求解, 得到方程组的系数矩阵相当稀疏, 给计算带来了方便. 最后, 为了说明方法的有效性, 我们给出了一些数值算例并与其它方法进行了比较. 相似文献
2.
3.
在分析非标准小波表示方法的基础上,计算了Legendre小波积分算子矩阵的非标准小波表示,并且计算了Legendre小波矢量函数积算子,还定义了积分算子,用这些算子求解Lane-Emden方程,得到了较好的数值逼近解.此方法还可以用于求解非线性积分方程,积分、微分方程. 相似文献
4.
由多分辨分析理论,构造了L(2[0,1])上的分段Legendre多小波基函数,并利用所构造的基函数提出了求解积分方程的配点法.求解过程中,对小波系数用阈值进行筛选,利用分段Legendre多小波基函数求解.以第一类Fredholm积分方程为例,表明该算法简单有效. 相似文献
5.
为了求解非线性分数阶Fredholm积分微分方程的数值解,通过Legendre多项式,得出了Legendre小波,并由block pulse函数给出了Legendre小波的分数阶积分算子矩阵,利用block pulse函数与Legendre小波的积分算子矩阵的性质将非线性分数阶Fredholm积分微分方程转化为非线性代数方程组,进而可以求得原积分微分方程的数值解.结果表明:随着点数的增多,数值解的精度也越来越高.文中给出的算例表明了该方法的可行性和有效性. 相似文献
6.
Legendre小波神经网络 总被引:1,自引:0,他引:1
在BP神经网络的基础上,结合Legendre小波构造了Legendre小波神经网络。由于Legenure小波在区间[0,1)上具有分段表达式并且为多项式的特点,因而构造的Legendre小波神经网络有结构简单、收敛速度快等优点。以神经网络的BP算法作为Lengendre小波神经网络的学习算法,用有6个Legenqdre小波基函数的Legendre小波神经网络对一个函数进行逼近分析,得到了较好的逼近效果。 相似文献
7.
主要应用Lcgendre谱方法求解一类带Neumann边界条件的抛物型方程.分别列举了线性问题和非线性问题的例子,并给出了相应问题的全离散谱格式.在谱格式的构造过程中,借鉴了构造稀疏矩阵的思想,分别构造了刚度矩阵为单位矩阵或三对角矩阵的计算格式.与经典的谱方法相比,该做法有效的避免了在处理含有二阶导数项或带Neumann边界条件时刚度矩阵是满整的缺陷.在数值计算中,数值结果说明了这种方法的有效性. 相似文献
8.
建立了求解梁振动方程数值解的移位Legendre小波配置法。利用移位的Legendre多项式,推导出Riemann-Liouville意义下移位Legendre小波函数的一般分数阶积分公式。利用分数积分公式和二维移位Legendre小波配置法,将梁振动方程求解问题转化为代数方程组求解。数值算例表明该方法具有较高的精度。 相似文献
9.
10.
为利用Legendre小波求分数阶Bratu型积分微分方程数值解,结合Legendre小波定义及其性质,给出Legendre小波分数阶积分算子矩阵.利用所得算子矩阵,将原问题转化为求解非线性代数方程组,进而可以计算机编程求解,从而大大简化计算量.唯一性定理指出所求分数阶Bratu型积分微分方程的解唯一.结果表明:随着点数的增多,数值解精度也越来越高.数值算例验证了算法的有效性和可行性. 相似文献
11.
利用定义在[0,1)上的连续Legendre多小波数值求解线性Fredholm积分一微分方程.剁用Legendre多小波逼近理论将积分一微分方程离散化为代数方程组.最后用数值算例与CAS小波理论以及Legendre小波理论比较,结果表明特别是当方程的解是线性函数时,Legendre多小波方法表现出更高的精度和有效性. 相似文献
12.
整数阶常微分方程的数值解法已有比较完善的理论,而时于分数阶微分方程数值方法的理论研究相对较少.由此考虑用Legendre小波逼近求线性分数阶微分方程数值解.首先描述了分数阶导敷、积分和I~enare小波的性质,然后利用这些性质把分数阶微分方程转化为Volterra积分方程.考虑采用Legendre小波求数值解的线性分数阶微分方程:Day(x)+λy(x)=f(x),0相似文献
13.
应用 Legendre 小波求解一类变系数分数阶微分方程组,利用 Legendre 小波积分算子矩阵将微分方程组转化成易于求解的代数方程组形式,进而对其进行求解。给出 Legendre 小波近似未知函数的收敛性分析,证明该方法的正确性,并给出三个数值算例进一步说明该方法是可行并有效的。 相似文献
14.
15.
利用已建立的CAS小波算子矩阵数值求解一类线性积分-微分方程组,通过CAS小波逼近理论将积分-微分方程组离散化为代数方程组,最后利用数值算例验证数值求解方法的有效性. 相似文献
16.
在Volterra积分微分方程(E0)的零解的一致渐近稳定性和预解算子之间建立了若干等价关系,并给出了相应的证明. 相似文献
17.
李龙图 《湖南大学学报(自然科学版)》1995,22(6):20-25
利用Leray-Schauder非线性择一定理,研究了二队是混合型积分微分方程边值问题,得到了边值问题的解的一般性存在准则和存在定理。 相似文献