首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
超支化环氧树脂增韧增强双酚A型环氧树脂   总被引:3,自引:0,他引:3  
利用液体型超支化环氧树脂HTME-2与双酚A型环氧树脂杂化复合,研究其固化物的力学性能和热性能.杂化树脂的力学性能随超支化环氧树脂的含量的增加先增加后下降,有最大值;超支化环氧树脂的用量为9wt%左右时,能使体系的拉伸强度、弯曲强度、冲击强度和断裂韧性分别提高17%、20%、177%和70%以上,但玻璃化转变温度下降.利用SEM、DSC、DMA和分子模拟技术研究杂化树脂的增韧增强机理、超支化环氧树脂的结构形态和分子尺寸.  相似文献   

2.
反应性聚碳酸酯增韧改性环氧树脂的相结构与性能   总被引:2,自引:0,他引:2  
研究了反应性聚碳酸酯 /环氧树脂体系中胺化聚碳酸酯的用量对固化体系的形态结构、玻璃化转变温度 Tg 和力学性能的影响 .用 SEM和 AFM对固化体系的形态进行了表征 .结果表明 ,固化体系的相容性良好 ,形成一个均相网络结构 .对胺化聚碳酸酯改性环氧树脂的体系与纯环氧树脂体系的力学性能进行了比较 ,发现前者断裂韧性和冲击韧性分别提高了 50 %和 4 4% ,而弯曲性能变化不大 ,拉伸性能有所下降 .DSC的测试结果表明增韧体系的 Tg 下降 .  相似文献   

3.
反应性聚碳酸酯增韧改性环氧树脂的相结构与性能   总被引:2,自引:0,他引:2  
研究了反应性聚碳酸酯/环氧树脂体系中胺化聚碳酸酯的用量对固化体系的形态结构、玻璃化转变温度丁g 和力学性能的影响.用SEM和AFM对固化体系的形态进行了表征.结果表明,固化体系的相容性良好,形成一个 均相网络结构.对胺化聚碳酸酯改性环氧树脂的体系与纯环氧树脂体系的力学性能进行了比较,其断裂韧性和冲 击韧性分别提高了50%和44%,而弯曲性能变化不大,拉伸性能有所下降.DSC的测试结果表明增韧体系的Tg也 下降.  相似文献   

4.
采用-缩二乙二醇改性甲基四氢邻苯二甲酸酐,在此基础上用改性酸酐增韧环氧树脂.用扫描电镜(SEM)、材料试验机、DMA等对固化产物的微观结构、力学性能和耐热性能进行了测试与表征.结果表明,当一缩二乙二醇与甲基四氢邻苯二甲酸酐的摩尔比为1:1.25时,制备的改性酸酐对环氧树脂具有明显的增韧效果.当改性酸酐的加入量为15%时,固化产物的增韧效果最佳,冲击断面呈现明显的韧窝状且力学性能和耐热性能基本保持不变.  相似文献   

5.
以聚对苯二甲酸乙二酯(PET)/蒙脱土(MMT)复合体系为基料,采用聚乙烯接枝马来酸酐(PE-g-MAH)、马来酸酐接枝聚乙烯辛烯弹性体(POE-g-MAH)以及聚丙烯接枝马来酸酐(PP-g-MAH)作为增韧剂,利用双螺杆挤出机进行熔融共混,研究了不同增韧剂对复合体系的力学性能、相容性和熔融结晶行为的影响。实验结果表明:加入增韧剂对PET/MMT复合体系具有良好的增韧效果,当POE-g-MAH加入量为30%时,缺口冲击强度为未加增韧剂时的2.4倍;红外表征显示,增韧改性可提高PET/MMT的相容性;XRD测试表明,增韧剂对PET/MMT复合材料的晶体结构没有影响,通过熔融增韧可提高其力学性能和加工性能;DSC结果显示,增韧剂的加入可使PET/MMT共混物的冷结晶温度降低;SEM结果表明,加入增韧剂可使界面之间的结合力变大,有效提高了PET/MMT共混体系的相容性。  相似文献   

6.
液体丁氰橡胶及纳米SiO2对环氧树脂的增韧机理   总被引:8,自引:0,他引:8  
采用液体丁氰橡胶及纳米SiO2对环氧树脂进行改性,借助于扫描电镜(SEM)和力学性能测试手段研究了液体丁氰橡胶及纳米SiO2在环氧树脂体系中的形貌及增韧机理.结果表明,液体丁氰橡胶及纳米SiO2对环氧树脂都具备良好的增韧效果.  相似文献   

7.
为了提高环氧树脂E44韧性,通过改变环氧树脂E44与热塑性丙烯酸树脂中丙烯酸树脂的含量,观察混合树脂分别在二乙烯三胺(DETA)和六氢苯酐(HHPA)固化时的相结构变化,采用扫描电子显微镜(SEM)、万能拉伸试验机、简支梁冲击试验机进行表征,SEM结果显示在两种固化剂条件下随着丙烯酸树脂的增加都依次出现单分散相机构、双连续相结构、相反转结构,力学性能测试结果显示在DETA固化条件下出现双连续相结构时丙烯酸树脂含量在15~20phr,可提高材料拉伸强度、弯曲强度和冲击强度,但韧性降低;在HHPA做固化剂条件下,出现双连续相结构时丙烯酸树脂含量在40~50phr,可显著提高材料拉伸强度、弯曲强度和冲击强度,并且材料韧性增强,显示出比较好的增韧改性作用。  相似文献   

8.
玻璃钢缠绕气瓶用环氧树脂固化动力学研究   总被引:1,自引:1,他引:0  
制备了以环氧树脂为基体,甲基六氢苯酐为固化剂,咪唑为促进剂的环氧树脂体系。采用非等温差示扫描法(DSC)研究了环氧树脂/甲基六氢苯酐体系的固化过程,得出了升温速率对固化体系DSC曲线的影响。引用Kissinger理论,确定了固化反应的动力学参数以及固化反应动力学模型。  相似文献   

9.
不饱和聚酯树脂/CaCO3体系固化动力学非等温DSC研究   总被引:3,自引:0,他引:3  
采用示差扫描量热(DSC)法对不饱和聚酯树脂(UP树脂)/CaCO3复合体系的固化过程进行研究,得出不同升温速率下UP树脂/CaCO3复合体系固化过程中的DSC曲线,并由动态DSC曲线求出固化反应的活化能、固化反应级数及动力学方程中的指前因子等参数,建立了复合体系固化反应动力学的数学模型。  相似文献   

10.
热致液晶PET—PHB共聚酯增韧改性环氧树脂   总被引:5,自引:0,他引:5  
采用熔融共混方法,用热致液晶PET-PHB共聚酯对环氧树脂进行增韧改性,并研究了共混体系的力学性能。借助扫描电镜,对材料断裂面的动态结构进行了分析,探讨了体系的形态结构与冲击性能之间的关系。研究结果表明,改性材料的弹性模量高于纯环氧树脂,其冲击强度及拉伸强度均有大幅度提高。当PET-PHB共聚酯的加入量为10%时,环氧改性材料的拉伸强度及冲击强度均为最大值。此时,改性材料的断面形态呈微观网络分布,明显不同于未改性环氧树脂脆性断裂的台阶型结构。  相似文献   

11.
以异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、聚己二酸1,4-丁二醇酯为主要原料,1,4-丁二醇为小分子扩链剂,乙二胺基乙磺酸钠为亲水性扩链剂,环氧树脂E-51为改性剂,合成了固含量为50%的环氧树脂改性磺酸盐型水性聚氨酯乳液,并采用FT-IR、XRD、SEM、AFM、DSC和DMA方法考察环氧树脂用量对乳胶膜结晶性能的影响.结果表明:随着环氧树脂用量的增多,XRD谱图中21.2°和24.3°处的两个尖锐的谱峰高度明显变小,SEM和AFM图中乳胶膜硬段和软段的相分离程度显著减弱,DSC曲线上可以观察到清晰的胶膜熔融峰和结晶峰,胶膜的结晶度减小,DMA曲线上改性树脂软段的玻璃化温度有朝低温方向移动的趋势,说明环氧树脂的加入降低了聚氨酯胶膜的结晶性能.  相似文献   

12.
经两步法合成了一种螺环原碳酸酯类膨胀单体,该单体在固化剂三氟化硼乙胺催化作用下,能进行阳离子双开环聚合反应,并讨论了该单体聚合反应机理采用差示扫描量热(DSC)跟踪环氧树脂及其被膨胀单体改性后的固化反应过程,发现纯环氧树脂存在2个固化反应放热峰,而改性树脂仅有一个反应放热峰结果表明:膨胀单体和环氧树脂进行了开环共聚反应,膨胀单体的加入能提高环氧基团的转化率。  相似文献   

13.
高性能TDE-85/E-51环氧树脂的聚氨酯增韧改性   总被引:1,自引:0,他引:1  
以混合芳胺为固化剂,通过聚氨酯(Pu)对4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯(TDE-85)与二酚基丙烷缩水甘油醚(E-51)环氧树脂的混合树脂体系的改性,制备了高性能聚氨酯改性环氧树脂(PU/EP)。通过红外光谱图、扫描电镜(SEM)、热重(TG)分析及力学性能的表征讨论PU/EP体系的结构与性能特征。研究结果表明:PU和EP分子链之间存在着化学接枝反应,能有效地改善PU/EP体系中PU和EP分子间的相容性及相互贯穿;与TDE-85与E-51的混和环氧树脂比,PU改性TDE-85与E-51的混和环氧树脂仍然具有很强的耐热性能,并且冲击强度、拉伸强度均获得显著提高;PU/EP体系断口裂纹呈明显的韧性断裂特征,说明TDE-85与E-51的混和环氧树脂PU改性增韧效果明显。  相似文献   

14.
ACS树脂改性PVC的研究   总被引:1,自引:0,他引:1  
将丙烯腈(AN)、苯乙烯(St)在氯化聚乙烯(CPE)存在下进行悬浮接枝共聚,获得了ACS树脂.研究了不同用量ACS树脂对PVC流变行为、力学性能、热性能的影响,用SEM观察其拉伸断面.结果表明,ACS树脂的加入改善了PVC的流动性,其效果比抗冲型ACR好.当ACS加入量为25%时,抗冲强度可提高2~3倍,而抗拉强度变化不大,同时热性能也有所提高.  相似文献   

15.
纳米碳酸钙作为环氧树脂增韧材料的研究   总被引:7,自引:0,他引:7  
文中研究了纳米碳酸钙作为增韧填料对环氧树脂力学性能的影响。纳米碳酸钙经表面处理后,填充到环氧树脂体系中,使环氧树脂拉伸强度提高39%、弯曲弹性模量增大52.9%、冲击强度提高68.6%。冲击断面SEM照片分析结果表明,改性纳米碳酸钙在环氧树脂中能够均匀分散,并在纳米碳酸钙和其周围的基体界面相出现大量的银纹,从而提高了复合材料的抗冲击强度。  相似文献   

16.
以端氨基聚二甲基硅氧烷(ATPDMS)和聚苯醚(PPO)为原料,采用一锅缩聚法合成了一种含硅氧烷链段和聚苯醚结构的芳香族聚酰胺(PAPM),并通过傅里叶变换红外光谱(FT-IR)和核磁共振(NMR)对其进行了结构表征。将PAPM作为增韧改性剂,与固化剂甲基六氢苯酐(MHHPA)一起加入环氧树脂(E51)中制备了E51/MHHPA/PAPM固化物。测试了PAPM和E51的相容性,结果表明,当添加量为5%~15%(质量分数)时,PAPM与E51在固化后的相容性良好,没有发生宏观可见光尺度上的相分离。力学性能测试结果表明:当PAPM添加量为15%时,环氧固化物的临界应力强度因子(KIC)相比不添加PAPM的环氧体系增加了112.2%;当PAPM添加量为5%时,环氧固化物的储能模量相比不添加PAPM的环氧体系增加了56.6%。采用扫描电子显微镜(SEM)对增韧改性材料的断面形貌进行了分析,结果表明其断裂面呈现漩涡状裂纹结构,断裂表现为韧性断裂。差示扫描量热法(DSC)测试结果表明,当PAPM添加量为15%时,环氧固化物的玻璃化转变温度(Tg)相对于不含PAPM的环氧体系提高了28.2℃。  相似文献   

17.
以端氨基聚二甲基硅氧烷(ATPDMS)和聚苯醚(PPO)为原料,采用一锅缩聚法合成了一种含硅氧烷链段和聚苯醚结构的芳香族聚酰胺(PAPM),并通过傅里叶变换红外光谱(FT-IR)和核磁共振(NMR)对其进行了结构表征。将PAPM作为增韧改性剂,与固化剂甲基六氢苯酐(MHHPA)一起加入环氧树脂(E51)中制备了E51/MHHPA/PAPM固化物。测试了PAPM和E51的相容性,结果表明,当添加量为5%~15%(质量分数)时,PAPM与E51在固化后的相容性良好,没有发生宏观可见光尺度上的相分离。力学性能测试结果表明:当PAPM添加量为15%时,环氧固化物的临界应力强度因子(KIC)相比不添加PAPM的环氧体系增加了112.2%;当PAPM添加量为5%时,环氧固化物的储能模量相比不添加PAPM的环氧体系增加了56.6%。采用扫描电子显微镜(SEM)对增韧改性材料的断面形貌进行了分析,结果表明其断裂面呈现漩涡状裂纹结构,断裂表现为韧性断裂。差示扫描量热法(DSC)测试结果表明,当PAPM添加量为15%时,环氧固化物的玻璃化转变温度(Tg)相对于不含PAPM的环氧体系提高了28.2℃。  相似文献   

18.
本研究合成了聚乳酸聚氨酯嵌段共聚物预聚体(PLA-b-PUP),以其作为聚乳酸(PLA)和热塑性聚氨酯(TPU)的活性相容剂,通过原位反应增容制备了PLA/TPU/PLA-b-PUP超韧共混物。通过拉伸试验、冲击试验、SEM、FT-IR、DSC和TGA研究了共混物的力学性能、热性能和增韧机理。结果表明,PLA-b-PUP中的异氰酸酯基团与PLA和TPU上的活性基团发生了反应,显著改善了PLA/TPU共混物两相界面的相容性。随着PLA-b-PUP的加入,共混物中PLA的玻璃化转变温度和相对结晶度逐渐降低,当PLA-b-PUP的质量分数为PLA/TPU共混物的4%时,共混材料的断裂伸长率和缺口冲击强度分别达到无相容剂时的8.12倍和2.73倍,表现出良好的增容增韧效果。添加PLA-b-PUP后,共混物的初始分解温度有所降低,但最快分解温度有所提高。  相似文献   

19.
合成了不同相对分子质量的四元伯胺封端的氨酯脲型聚醚胺(TAPEU),并用于增韧双酚A型环氧树脂/二乙烯三胺(DGEBA/DETA)固化体系。利用核磁氢谱和傅里叶红外光谱(FTIR)表征了TAPEU的结构,系统表征了TAPEU改性DGEBA/DETA材料的氢键化程度、玻璃化转变温度、交联网络结构、拉伸断裂面形貌特征以及材料的力学性能。结果表明,成功合成了不同相对分子质量的TAPEU;当TAPEU相对分子质量增加时,材料交联密度降低,氢键化作用增强,玻璃化转变温度有所增加;引入TAPEU改性环氧树脂材料体系,断裂面具有明显韧性断裂特征,且出现微相分离;TAPEU改性环氧树脂材料的韧性和冲击强度有明显的提高。与未改性环氧树脂相比,添加摩尔分数为50%TAPEU2000的改性材料冲击强度提高了65%,断裂伸长率提高了330%。  相似文献   

20.
采用1,2-环氧环己烷4,5-二甲酸二缩水甘油酯(TDE-85)、对氨基苯酚环氧树脂(AFG-90)及其混合树脂,以二氨基二苯砜(DDS)为固化剂,添加氨基化多壁碳纳米管(MWCNTs-NH2)制备了纳米复合材料。应用非等温差示扫描量热(DSC),红外光谱(FT-IR)和力学性能测试等方法,分析了添加MWCNTs-NH2前后,树脂体系固化反应、醚化反应与压缩性能的变化。研究结果表明,碳纳米管/环氧树脂复合材料的压缩性能与固化反应后期羟基和环氧基团之间的醚化作用有密切关系。MWCNTs-NH2的加入阻碍了TDE-85/DDS体系固化反应后期的醚化作用,与纯树脂体系相比反应热降低了50 J/g,红外光谱中脂肪族醚键与苯环吸收峰面积比值降低了7.7%,复合材料压缩强度降低了3.2%。与之相反的是,MWCNTs-NH2的加入促进了AFG-90/DDS体系固化反应后期的醚化作用,与纯树脂体系相比,反应热提高了80J/g,红外光谱中脂肪族醚键与苯环的吸收峰面积比值提高了13.8%,复合材料压缩强度提高了17.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号