首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 102 毫秒
1.
采用高效液相色谱法测定贵阳市道路地表灰尘中PAHs的含量,并对其分布特征及来源进行解析.结果表明,贵阳市道路地表灰尘中PAHs主要为化石燃料的燃烧所致,高环PAHs含量较高.工业区和重要交通干道的ΣPAHs含量最高,公园最低,在不同粒径道路地表灰尘中∑PAHs在630.3~1 870.1μg/kg之间,∑PAHs均值为1 154.5μg/kg,∑PAHs浓度最大值及质量负荷率的最大值出现在粒径范围0.074~0.150mm灰尘样品中.  相似文献   

2.
采用高效液相色谱法对贵阳市道路地表灰尘中16种多环芳烃(PAHs)进行了定量分析,研究了贵阳市道路地表灰尘中PAHs在不同功能区分布特征,并分析了其可能来源。最后以单因子指数、内梅罗综合指数评价法和苯并(a)芘的等效致癌毒性(BEQ)评价标准对PAHs的生态风险进行了评价。结果表明,贵阳市道路地表灰尘样品中PAHs的质量分数在88.1~13 192.7μg/kg之间,各个功能区地表灰尘PAHs质量分数有明显差异,最高值出现在交通要道,最低值出现在公园。生态风险评价表明,贵阳市地表灰尘中以交通要道和工业区两个功能区已受到严重的PAHs威胁,具有较为严重的生态风险.  相似文献   

3.
城市道路灰尘中的多环芳烃在一定程度上可以反映邻近区域多环芳烃的排放情况。作者采用超声波溶剂提取、自制硅胶层析柱净化和高效液相色谱分离,建立了城市道路灰尘中菲和蒽、荧蒽和芘、苯并[a]蒽和等3对多环芳烃同分异构体的分离分析方法。该方法精密度优于4%,检出限(质量分数)为(1.6~4.7)×10-9,回收率为72%~92%。用该方法测定了成都市城东不同功能区道路中6种多环芳烃的含量,总质量分数在(1.57~7.15)×10-6。多环芳烃含量分布表明人口密集、工业活动及交通要道等功能区道路灰尘中多环芳烃含量高。源解析结果显示研究区道路灰尘中多环芳烃主要来源于附近的石油、机动车尾气和有机物质燃烧。  相似文献   

4.
北京地区土壤中多环芳烃的分布特征   总被引:13,自引:0,他引:13       下载免费PDF全文
研究了北京市北部、西部、西南部城市居民生活区土壤中多环芳烃(PAHs)的分布特征,并对土壤中多环芳烃的来源进行了分析。结果表明,车流量较多的路边土壤PAHs含量很高;工业区周围的生活区域PAHs含量较高。城市道路土壤中PAHs主要来自燃烧源,而工业区PAHs则显示为燃烧源和石油源的混合污染。  相似文献   

5.
贵州省遵义地区表层土壤中多环芳烃分布特征   总被引:1,自引:1,他引:1  
调查研究了151个取至贵州省遵义地区12个市(县)的土壤中的多环芳烃(PAHs)的背景含量及与各市(县)总污染物排放量的关系.遵义地区各县(市)表层土壤中PAHs含量介于0.8~251 μg/kg,从单个化合物的检出情况来看,主要以二环、三环和四环PAHs检出率较高,其中四环以苯并(a)蒽,苯并(b)蒽及屈为主,检出率分别为41.7%,38.1%和34.4%.三环PAHs中以菲与蒽的检出率较高分别为37.1%和30.5%,具有两个环化合物以芴与苊为主,检出率分别为41.1%和27.8%.遵义地区各县(市)表层土壤PAHs检出特征虽大体相同,但其含量却有较大差异,其中遵义县∑PAHs的含量最最高,平均为74.5μg/kg,最低为绥阳县为13.74μg/kg,各采样点平均16种PAHs含量从低到高依次为:绥阳县、湄潭县、桐梓县、仁怀、务川县、余庆县、凤冈县、正安县、习水县、赤水县、道真县和遵义县.各县∑PAHs含量的差异与该县市空气与废水排放总量呈显著正相关,相关系数r为0.971,表明贵州土壤中的PAHs主要来自于能源物质的燃烧和PAHs全球范围内的自然迁移,但土壤处于较低污染状态.  相似文献   

6.
为了解黔南地区表层土壤中多环芳烃(PAHs)的污染状况,共采集12个县市土壤样品98份进行16种多环芳烃的定量分析,对其分布特征、污染水平进行了探讨.结果表明,土壤中PAHs检出含量为0.4~755.9μg/kg,其中芴和苯并(a)蒽为检出率最高的主要污染物,均值分别为4.47和6.95μg/kg,与国内其它地区报道相比,黔南地区表层土壤受到一定程度的PAHs污染,但处于较低的污染状态.  相似文献   

7.
周异男  李彩云 《河南科学》1999,17(3):246-249
用激光溅射多相反应体系,以石墨为固体靶,以四氯化碳为气相和液相反应物,合成了一系列全氯代稠环芳烃化合物。分离和表征了其中的八氯萘、十氯蒽、十氯菲、十氯芘。结果表明,激光溅射这一物理方法可以做为一种有效的合成手段,通过等离子体反应得到产物。  相似文献   

8.
西江水体中多环芳烃的分布特征   总被引:1,自引:0,他引:1  
采用玻璃纤维滤膜过滤分离西江水柱样品,并根据气相色谱一质谱联用(GC-MS)对多环芳烃(PAHs)进行定量分析.结果表明,溶解相和颗粒相中多环芳烃的浓度分别为21.7~138 ng·L-1和40.9~238μg·kg-1.水体中多环芳烃的总含量(颗粒相及溶解相),洪水期(43.9~116.9ng·L-1)大于枯水期(25.2~34.1 ng·L-1).从PAHs组成特点来看,溶解相以3环的PAHs为主,占总组分的80%;而颗粒相以3环、4环的PAHs为主,分别占总组分的48%和41%.西江水体多环芳烃的总含量,高于欧洲一些低污染水域,但低于国内一些主要河流.  相似文献   

9.
结构-活性关系对氯代多环芳烃性质的预测   总被引:2,自引:0,他引:2  
氯代多环芳烃(chlorinated polycyclic aromatic hydrocarbons,Cl-PAHs)作为多环芳烃的氯代衍生物,具有类似二噁英的致癌、致突变毒性,并在环境中广泛存在.利用结构-活性关系及逸度模型对该新型有机污染物进行性质及环境归趋的预测.结果表明,随着氯原子取代数的增加,Cl-PAHs的毒性会有所增强,且在环境中更趋向富集于土壤和底泥中,具有与二噁英类似的环境行为.  相似文献   

10.
珠江广州段沉积物中多环芳烃分布及富集研究   总被引:3,自引:1,他引:2  
通过对珠江广州河段沉积物进行粒度分级:>500μm,500μm>>220μm,220μm>>63μm,,63μm>>22μm,<22μm.对各个粒级的样品重液分离,收集轻组分(有机质)和重组分(主要为无机矿物及无定型有机质).参照美国EPA8000系列方法分析样品中多环芳烃(PAHs),利用显微镜对沉积物中不同组分进行鉴定,讨论了PAHs在沉积物不同组分中的分布规律.  相似文献   

11.
利用GC-MS对上海市多环芳烃(PAHs)潜在的污染源成分谱特征进行了定量分析。结果表明,工业区路面尘中PAHs含量最高值均分布在土壤63~125μm粒径中,主要以中高环Phe、Fl、Pyr、Chry、B[b+k]F和Ba P为主;建筑工地土壤与路面尘中PAHs分布特征相似,主要以Phe、Fl、Pyr和Chry为主;秸秆在不同燃烧条件下PAHs产生量不同,但PAHs组分特征相同;卡车、客车和小汽车中PAHs含量分别为56μg/g,47.2μg/g,529.1μg/g。小汽车尾气中以高环PAHs为主,卡车和客车以低环为主;油烟中Ba P的平均含量为38 ng/g,单体PAH以Phe、Fl、Nap和Pyr为主。烤肉中PAHs的含量为6.7μg/g。  相似文献   

12.
淮北芦岭矿区土壤中PAHs的分布特征及分析   总被引:1,自引:0,他引:1  
在运用气相色谱-质谱方法对淮北芦岭煤矿区17个代表性土壤样品和一个煤矸石样品进行28种PAHs(polycyclic aromatic hydrocarbons)测试和分析的基础上,研究了PAHs在矿区土壤中的分布特征及迁移行为,评价了PAHs在矿区的环境影响.结果表明,研究区28种PAHs,总含量(干重)∑28PAHs从0.35μg/g到6.21μg/g,平均值为1.69μg/g.其中16种是USEPA规定的优控PAHs,总含量(干重)∑16PAHs从0.23μg/g到3.53μg/g,平均值为1.00μg/g.按相关评价标准,该区部分土壤受到PAHs中度到重度污染,且该区PAHs污染来源是煤矸石堆和生物质燃料燃烧.通过毒性评价可知,PAHs污染土壤的环境风险主要是苯并[a]芘,TEQ达60.68%.  相似文献   

13.
为了探究近年来秦皇岛市大气中PM2.5污染特征和影响因素,通过采集冬季重污染时段城区和开发区PM2.5样品,使用等离子体发射光谱仪和气相色谱-质谱仪,分别测定城区样品中6种元素(Cu,Pb,Zn,Cr,Ni,Cd)和PAHs.结果表明,秦皇岛城区PM2.5日平均质量浓度186μg/m3,开发区平均质量浓度为118.88μg/m3,城区PM2.5中各重金属元素的浓度水平排序为Zn>Pb>Ni>Cr>Cu>Cd,其中Cd为强-极强污染,Pb为中-强污染,Zn属于中等污染,Ni,Cu,Cr等其他元素基本无污染.PM2.5中定性的检测到奈(Nap)、菲(Phe)、荧蒽(Fla)、芘(Pyr)、苯并(k)荧蒽(BkF)等单体.PM2.5日浓度与风速具有显著的负相关性,与相对湿度呈正相关性.  相似文献   

14.
选择武汉市经济技术开发区(1#)和江岸区后湖(2#)两个典型区域,分析了大气总悬浮颗粒物(TSP)中16种多环芳烃(PAHs)的浓度特征,通过特征比值法进行了源解析,并以致癌、致突变等效浓度、终身致癌超额危险度和预期寿命损失三个不同层次的指标进行了健康风险评估。结果表明:两个监测点TSP中PAHs浓度均远高于环境质量标准,不同环数的PAHs分配比例均为5~6环4环2~3环;污染物源解析表明两个监测点的PAHs主要来源包括石油燃烧和机动车尾气排放,其中机动车排放偏重于柴油型。PAHs的健康风险评估结果表明两个监测点的PAHs总致癌等效浓度(TEQ)值和总致突变等效浓度(MEQ)值都较高,且PAHs终身致癌超额危险度均超出最大可接受范围,同时预期寿命损失成人高于儿童;进一步比较发现,1#监测点的Ba P平均浓度、TEQ、MEQ、终身致癌超额危险度以及预期寿命损失均高于2#监测点,且近几年武汉市大气颗粒物中PAHs污染水平呈上升趋势。  相似文献   

15.
为查明城市老工业搬迁区景观河道中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的分布特征并评估其生态风险,于2011年10月至2012年9月期间,以沈阳市卫工河为研究对象,调查了河水和底泥中16种国家环保部优先控制的PAHs环境滞留情况.通过季节性采样和沿河采样,初步查明了PAHs的时空分布特征,用熵值法初步评价了PAHs滞留的生态风险.结果表明:卫工河水中PAHs的平均质量浓度为0.721μg·L-1,底泥中PAHs平均质量分数为3 777.8 ng·g-1.河水与底泥中PAHs含量与溶解态有机碳含量均呈正相关关系.熵值法分析结果表明,卫工河PAHs滞留存在中度偏低水平的生态风险,但在某些样点区,底泥中萘和蒽的生态风险值较高.  相似文献   

16.
上海大气可吸入颗粒物中多环芳烃(PAHs)的污染特征研究   总被引:31,自引:0,他引:31  
采用气质联用技术(GC/MS)对上海市大气颗粒物中美国EPA优先控制的16种多环芳烃进行定量研究.结果显示,冬季PAHs浓度最高,夏季浓度最低;绝大多数的PAHs存在于0.43~2.1μm的粒径范围内;在粒径分布上,三环、四环、五环的PAHs基本上呈单峰分布,在0.43-1.1μm时达到浓度最高值.  相似文献   

17.
珠三角大气多环芳烃(PAHs)的干湿沉降   总被引:8,自引:0,他引:8  
为研究大气有机污染物的沉降作用对周边环境的影响,以大气中多环芳烃的沉降为例,使用被动采样器,于珠江三角洲代表性地段(包括香港)系统布设了13个大气干湿沉降采样点,分季节进行了为期1年的连续观测研究(200104-200204).结果显示,扣除挥发性较高的萘后,珠江三角洲大气中总多环芳烃(∑PAH)的干湿沉降通量在85ng/(m2·d)(香港)和1 114 ng/(m2·d)(广州)之间,平均通量为463 ng/(m2·d).各采样点沉降通量均表现出冬季略高于夏季的特点.主成分分析结果揭示了在区内亚热带季风气候条件下,水、热因子的不同组合是控制大气PAH干湿沉降的主导因素.  相似文献   

18.
利用大流量主动采样器连续6 个月采集了上海近郊可吸入大气颗粒物( PM10和PM2.5), 利用气质联用技术分析了其中16 种优先控制的多环芳烃(polycyclic aromatic hydrocarbons, PAHs). 结果表明, 上海近郊大气颗粒物PM10 和PM2.5 中∑PAHs 的质量浓度范围分别为5.25~136 和3.56~149 ng/m3, 平均值分别为36.9 和28.5 ng/m3. 通过特征比值法, 可推测该地区的大气颗粒物主要来源于煤炭燃烧及交通运输排放的尾气. 在16种PAHs 中, 具有强致癌效应的BaP 的质量浓度为0.6~16 ng/m3; ∑PAHs 的总毒性当量(toxic equivalent quantity, TEQ)分别为5.4和4.1 ng/m3. 根据所测大气颗粒物中BaP等效毒性当量的暴露浓度, 利用终生致癌风险(incremental lifetime cancer risk, ILCR) 模型, 分别对不同性别、不同年龄段人群的呼吸和皮肤接触暴露PAHs 造成的潜在健康风险进行了评估. 结果表明: ILCR 大小按年龄段排序为成人>儿童>青年; 按性别排序则为女性>男性. 所有年龄段的终生致癌风险皆略高于美国环保总局(United States Environmental rotection Agency, USEPA) 规定的可忽略阈值(10−6), 存在一定的人体健康风险, 因此需从源头对PAHs 以及可吸入颗粒物的排放浓度进行有效的控制, 以减少其对人体的潜在危害.  相似文献   

19.
Lung cancer incidence in Xuanwei and Fuyuan is extremely high. The air pollution, especially indoor airborne PAHs generated by burning smoky coals, has been considered as the most probable reason. The air pollution may affect drinking water and soil through dry and wet deposition. In this study, the concentrations of PAHs in water and soil samples from Xuanwei and Fuyuan were monitored to investigate the influence of atmospheric PAHs pollution on water and soil. No obvious PAHs pollution in water was found in these two areas, indicating that airborne PAHs have no apparent effect on the drinking water (well water). The smoky coal combustion from household and industry, such as the activities related to power plants, coking plants and chemical industries, is responsible for the soil PAHs pollution in these two areas. The soil pollution might be the reemission source and would pose long-term threat to the local environment and health of residents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号