首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
2.
为了克服Ag作为超导基底时的高温使用缺陷,提高Ag的熔点及其力学性能,选择了高熔点的Al2O3作为掺杂物,通过传统粉末冶金方法制备了Al2O3/Ag基复合材料.结果表明,在Ag基体中掺杂≥1%Al2O3粒子可以提高Ag的熔化温度tm至970℃以上,Al2O3质量分数大于3%时,样品tm可提高至990℃以上.在Al2O3质量分数小于3%样品中,2%Al2O3/Ag基复合材料具有最大的硬度、抗拉强度以及最小的线膨胀系数与延伸率.由于2%Al2O3/Ag样品具有合适的熔化温度、接近于YBaCuO的线膨胀系数和最好的力学性能,满足了后期Ar气氛下热处理YBaCuO超导带材对基底的要求.  相似文献   

3.
用溶胶-凝胶法(Sol-Gel)结合超临界干燥技术(SCFD)制备Fe2O3/Al2O3二元超细复合材料,并用XRD,TEM进行检测。研究结果表明,采用该法,可制得红色、分散性好、粒径小于1μm的Fe2O3/Al2O3二元超细复合材料。  相似文献   

4.
利用Al-TiO2-C体系熔铸法制备含稀土CeO2原位自生Al2O3-TiCP/Al基复合材料.借助差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)等测试技术,对Al-TiO2-C体系的组织结构进行了详尽的分析,讨论了对稀土CeO2铝对Al2O3-TiCP/Al基复合材料的影响规律.实验结果表明,稀土CeO2的加入可改善陶瓷颗粒Al2O3和TiC与熔体的润湿性,而且有效的细化和净化了组织,降低了反应温度.稀土CeO2添加剂含量为0.5%时利用熔铸法制备的复合材料中原位形成的Al2O3,TiC颗粒尺寸较小,分布均匀.  相似文献   

5.
6.
7.
内氧化工艺对Al2O3/Cu复合材料中Al2O3颗粒分布的影响   总被引:1,自引:0,他引:1  
采用压块加入法和分别加入法两种内氧化工艺,将CuO和Al粉末加入到Ar气保护的铜液中制备Al2O3/Cu复合材料,在光学显微镜、扫描电镜及X射线衍射仪上观察分析了Al2O3颗粒的数量,分布及材料的相组成。结果表明,压块加入法生成的Al2O3颗于枝晶状分布,最体保温时间为30-45min。分别加入法生成的Al2O3颗粒呈弥散状分布,最佳保温时间为45-60min。  相似文献   

8.
以正硅酸乙酯(TEOS)、仲丁醇铝(ASB)为前驱体,采用溶胶-凝胶及超临界干燥工艺,分别制备硅酸铝纤维(ASF)、Al_2O_3纤维(AF)和莫来石纤维(MF)增强Al_2O_3-SiO_2气凝胶(ASC)隔热复合材料,并对材料的微观结构、耐温性、高温热导率和力学性能进行研究。结果表明:纳米多孔Al_2O_3-SiO_2气凝胶均匀填充到纤维间的孔隙中,并紧密包裹在纤维的表面,显著减少了纤维间的搭接,Al_2O_3-SiO_2气凝胶隔热复合材料中的纤维增强相发挥了增强、增韧功能。纤维种类对材料耐温性、高温热导率有较大的影响,对力学性能影响较小,AF/ASC和MF/ASC复合材料耐温性能较高,经1 200℃、30 min热处理后,材料厚度方向平均线收缩率分别为-2.5%和2.7%;MF/ASC复合材料的热导率较低,当热面温度为1 100℃时热导率达到0.065 W/(m·K);3种纤维增强Al_2O_3-SiO_2气凝胶隔热复合材料的力学性能相当,材料3%应变的压缩应力分别为0.22、0.21和0.19 MPa。  相似文献   

9.
制备S2O8^2-/Al2O3-Fe2O3型固体酸催化剂,用于催化乙酸和正丁醇合成乙酸正丁酯,采用TG/DSC、IR、SEM、XRD等对其结构和性能进行了表征,并研究了焙烧温度对其催化性能的影响。结果表明,不同焙烧温度对S2O8^2-/Al2O3-Fe2O3系列催化剂的结构和性能均产生一定的影响;随着焙烧温度的升高,酯化率呈先增加后降低的趋势,其中500℃焙烧的催化剂具有最佳的催化活性,其酯化率达到90.78%。  相似文献   

10.
纳米Al2O3对聚乙烯工程材料性能的影响   总被引:14,自引:0,他引:14  
采用压制和烧结的方法,制备了纳米Al2O3和超高分子量聚乙烯的复合材料。用MPV-200型摩擦磨损试验机和腐蚀磨损试验机研究了纳米Al2O3粒子对超高分子量聚乙烯工程塑料的摩擦磨损性能的影响。结果表明:纳米Al2O3粒了不仅显著地提高了超高分子量聚乙烯的耐磨性,而且降低了超高分子量聚乙烯的摩擦系数,同时使得超高分子量聚乙烯的硬度增大,扩大了超高分子量聚乙烯材料的应用范围。  相似文献   

11.
12.
制备添加Al2O3的(1-y)Ce0.8La0.2O1.9+yAl2O3(y=0、0.005、0.01、0.02、0.03、0.05、0.07、0.1)电解质材料. 考察Al2O3的添加对La3+单掺杂CeO2电解质材料烧结性能、热膨胀、离子电导率和抗弯强度的影响. 结果表明:Al2O3能促进Ce0.8La0.2O1.9的烧结;当Al2O3的摩尔分数大于0.02时,出现了第二相LaAlO3;Al2O3的添加能提高Ce0.8La0.2O1.9的离子电导率,当Al2O3的摩尔分数为0.005时,试样的离子电导率达到最大值;Al2O3的添加能有效提高Ce0.8La0.2O1.9的抗弯强度,抗弯强度随着Al2O3添加量的增加而增大;所有试样的热膨胀系数为(12.28~12.55)×10-6K-1.  相似文献   

13.
Al2O3颗粒增强不锈钢基表面复合材料腐蚀性能的研究   总被引:1,自引:1,他引:1  
针对湿法磷酸工况,设计了不锈钢基体的化学成分;在Al2O3颗粒表面,通过化学气相沉积Ni涂层,解决了颗粒与基体的润湿性问题;采用负压铸渗工艺制备了氧化铝-锈钢基表面复合材料,并研究了该复合材料在此工况下的静态耐蚀性能,发现了耐蚀性能超过了高铬钢。  相似文献   

14.
研究了纳米单斜ZrO2含量对Al2O3/ZrO2复合陶瓷烧结性能的影响。在单斜ZrO2初始含量较少的情况下,处于Al2O3颗粒之间的部分ZrO2颗粒阻碍了颈部的形成,使样品的烧结密度降低。但随着单斜ZrO2初始含量的增加,纳米单斜ZrO2颗粒之间的接触机会增多,使得样品烧结密度提高。实验结果表明,纳米ZrO2的体积分数对复合材料的烧结性能有着明显的影响。  相似文献   

15.
以纳米η-Al2O3与工业铬绿为原料,采用固相烧结的方法制备Al2O3-Cr2O3固溶体.以聚乙烯醇为结合剂,经过冷等静压成型后,分别以埋碳和空气两种气氛在1400~1600℃常压烧结.研究不同气氛、不同温度下试样的性能、显微结构和烧结动力学.在烧结过程中,随温度升高,两种不同气氛的Al2O3-Cr2O3固溶体晶粒生长指数减小,晶粒生长活化能下降.埋碳气氛下Al2O3-Cr2O3固溶体平均晶粒生长指数为1.763,晶粒生长主要受晶界的曲率和一小部分体积扩散控制;空气气氛下Al2O3-Cr2O3固溶体平均晶粒生长指数为3.454,晶粒生长主要受离子随机越过晶界和体积扩散控制.对比晶粒生长活化能发现,空气气氛更有利于Al2O3-Cr2O3固溶体晶粒的生长发育,但当温度过高时应考虑CrO3的挥发对晶粒生长的影响.  相似文献   

16.
为解决无钙焙烧生产铬产品时产生的含铬铝泥的污染问题,本文在去除铝泥中铬成分后,采用聚乙二醇(PEG)600和六偏磷酸钠(SHMP)为分散剂制备了高纯Al2O3粉体。结果表明,Al2O3,粉体中未检出Cr、Fe等成分,为高纯粉体。加入0.5%PEG600为分散剂时粉体的平均粒径较小,样品颗粒的团聚现象明显减少,颗粒间层叠...  相似文献   

17.
研究了通过放电等离子烧结(Spark Plasma Sintering,SPS)方法制备的Al90Mn9Ce1/Al2O3金属/陶瓷块体复合材料的抗氧化腐蚀性能和力学性能。结果表明,复合材料具有良好的抗氧化抗腐蚀性能以及较高的强度,强度氧化速率仅为0.016mg/h、腐蚀速率为3.2mg/h;抗压强度514MPa、显微硬度达到231.75HV。  相似文献   

18.
本文制备了Bi2 O3-Ni2 O3纳米粉末,对其结构进行了表征,并研究了制备的纳米粉末对苯光催化降解的影响因素。结果表明:制备的纳米粉末由Bi2 O3和Ni2 O3复合而成,经750℃焙烧的光催化剂对苯光催化降解活性最高;水蒸气的加入和氧气的增加,都能促进苯的降解率增大;由Lang-muir-Hinshelwood动力学模型得出苯的光催化降解反应的吸附常数和反应速率常数分别为0.1398L·μmol-1和0.0024μmol· L-1· min-1。  相似文献   

19.
Al2O3对碱硅酸反应的影响   总被引:1,自引:0,他引:1  
采用分析纯Al2O3和烧铝矾土,以玻璃砂为活性骨料,通过测定砂浆棒的膨胀率及用能谱仪分析砂浆棒中C—S—H凝胶的组成,研究了Al2O3对碱硅酸反应的影响,并分析了其机理。结果显示,Al2O3对碱硅酸反应也有较好的抑制作用。其机理可能为Al^3+对C—S—H中Si^4+的取代作用加强了C—S—H对碱的结合能力。  相似文献   

20.
针对目前高炉的冶炼条件,分析高炉炉渣中Al2O3的来源以及对炉渣脱硫的危害。从热力学和动力学角度分析了Al2O3对炉渣脱硫能力的影响。通过实验研究了Al2O3含量以及MgO/Al2O3对炉渣脱硫能力的影响。实验结果表明Al2O3含量过高不利于高炉渣的脱硫。Mg0/Al2O3适当提高可以增强Al2O3含量较高时炉渣的脱硫能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号