首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 纳米药物作为一种新兴的药物制剂,显示出为癌症患者提供副作用更小和具有靶向效果的治疗前景。近年来,随着纳米生物技术的发展,纳米药物的研发和临床转化取得了巨大的进展。现有很多纳米药物已经进入临床试验,其中部分产品已获得批准,在临床上应用于肿瘤治疗,改善了治疗效果。但是,肿瘤的复杂性和异质性,也为纳米药物对肿瘤的治疗带来巨大的挑战。本文从纳米药物的临床转化角度出发,概述了癌症纳米药物的发展和现状,纳米药物在临床转化中进展及面临的挑战与机遇。  相似文献   

2.
纳米酶是一种具有类酶催化活性的纳米材料。本文综述刺激响应型纳米酶及其在肿瘤微环境中通过调节肿瘤微环境的酸度、升高过氧化氢的浓度、消除抗氧化分子等策略,促进纳米酶在肿瘤细胞内催化产生活性氧物种,提高化学动力学治疗肿瘤效果,并综述纳米酶在内源性刺激化学动力学治疗的基础上,协同外源性刺激的光动力治疗、光热治疗、声动力治疗、放射治疗以及联合免疫治疗,实现肿瘤高效精准治疗的研究进展。  相似文献   

3.
在制备金胶修饰碳糊电极(Au/CPE)的基础上,将葡萄糖氧化酶(GOD)通过吸附作用固定在Au/CPE表面.固定化的GOD与电极之间能够进行直接的电子传递,纳米金颗粒能增大对GOD的吸附量和吸附强度,同时使GOD的氧化还原中心FAD/FADH2的还原态FADH2更趋稳定.对修饰电极检测葡萄糖的机理进行了讨论,并制备了基于检测氧化电流的直接电子传递型葡萄糖传感器.  相似文献   

4.
共轭聚合物以其独特的结构和性能得到了广泛的关注.聚苯胺(PANI)纳米复合材料制备工艺简单、成本低廉、毒性低、易于功能化,从而在癌症治疗方面取得了巨大的进展.通过不同功能的化合物修饰制备的PANI纳米复合材料极大地拓宽了癌症治疗领域.基于PANI纳米复合材料,文章总结了其在癌症诊疗领域的光热治疗、协同治疗、多模态成像引导治疗和智能响应治疗的研究进展,并分析了其发展趋势.  相似文献   

5.
光动力疗法(PDT)是光敏剂通过光激活产生的单线态氧(~1O_2)来杀死癌细胞。光动力疗法的3个关键因素主要有:光、光敏剂与组织氧。在PDT治疗过程中,氧气消耗和实体瘤中固有的缺氧微环境可能进一步导致供氧不足,阻碍光动力疗效,而光热疗法(PTT)不受乏氧环境的影响,且具有无创性、低毒性等优点。将全氟化碳(PFCs)和光敏剂(Pba)接枝到透明质酸(HA)链中,然后负载聚多巴胺纳米粒子(PDANPs),设计出了一种新型的靶向自供氧光动力与光热协同治疗体系。由于PDANPs优良的光热转换性能、PFC较高的氧亲和力和HA的肿瘤靶向性,使得该协同疗法的抗肿瘤作用显著提高,细胞毒性实验以及细胞摄取实验证明了其增强的光热与光动力治疗效果。  相似文献   

6.
Fe@Fe_3O_4纳米粒子(NPs)由于Fe核的存在具有很大的饱和磁化率和横向弛豫率,能够表现出比Fe_3O_4 NPs更好的磁共振成像(MRI)和光/磁热治疗效果,并且由于其具备光声和磁共振(MR)造影功能,可引导Fe@Fe_3O_4 NPs对肿瘤进行治疗.该材料因生物相容性好、成像和治疗方式多元化等优点而受到越来越多的关注.通过介绍和总结Fe@Fe_3O_4 NPs的几种成像模式和治疗方式,描述了目前该材料的最新研究进展,以深入了解Fe@Fe_3O_4 NPs在癌症治疗中的潜在应用.  相似文献   

7.
采用水热法合成了直径为10~15nm的ZnFe_2O_4磁性纳米颗粒,将ZnFe_2O_4磁性纳米粒子添加到TEOS中,水解后得到ZnFe_2O_4@SiO2核壳结构的纳米复合材料,TEM图像证实了复合材料具有直径约为20nm的核壳结构.制备出的ZnFe_2O_4磁性纳米粒子和ZnFe_2O_4@SiO2核壳结构纳米复合材料都表现出了顺磁性,温度低于800℃时ZnFe_2O_4磁性纳米粒子仍然具有顺磁性,温度高达580℃时ZnFe_2O_4@SiO2核壳结构纳米复合材料还是显示出了超顺磁性,这意味着ZnFe_2O_4和ZnFe_2O_4@SiO2磁性纳米粒子具有良好的磁稳定性.由于SiO2壳具有很好的亲水性和抗酸性,ZnFe_2O_4@SiO2核壳结构纳米复合材料未来可应用于磁疗法治疗癌症.  相似文献   

8.
纳米材料在生物领域的渗透形成了纳米生物材料,而纳米药物载体的研究是纳米生物材料的前沿和热点之一.常见的无机纳米药物载体包括磁性纳米粒子、介孔二氧化硅、纳米碳材料、量子点等,这些无机纳米药物载体在实现靶向性给药、控释和缓释药物以及癌症靶向治疗等方面表现出良好的应用前景.而且,集成像、靶向给药和癌症治疗功能于一身的多功能纳米药物载体比常规化疗药物载体具有明显优势.文中综述了近年来上述无机纳米材料尤其是多功能无机纳米载体在靶向药物输送中的应用及其载药释药行为的研究进展.  相似文献   

9.
 癌症诊疗一体化是集癌症诊断和治疗于一体的新技术。通过将具有肿瘤诊断和治疗功能的组分同时整合到一个纳米平台上,获得纳米诊疗剂,有望实现肿瘤的早期诊断、精确定位、原位治疗,以及实现在治疗过程中的实时疗效监测与预后。本文概述了癌症诊疗一体化的发展历程,分析了诊疗一体化在癌症诊断和治疗过程中的独特优势,介绍了具有代表性的纳米诊疗剂,展望了癌症诊疗一体化领域未来的发展方向。  相似文献   

10.
制备了一种基于黑磷纳米片(BPNSs)的多功能纳米药物载体,能够联合化疗和光热疗法用于癌症治疗.BPNSs通过静电吸附作用吸附抗癌药物阿霉素(DOX),然后通过多巴胺(DA)自聚合形成聚多巴胺(PDA)涂层后,成功制备一种纳米复合载药材料BPNSs-DOX@PDA.BPNSs-DOX@PDA具有极好的DOX载药能力、优异的光热转换性能、pH-和光响应控制释药和较低的细胞毒性等优点.这些特点使得BPNSs-DOX@PDA成为一种卓越的抗肿瘤药物递送系统,具有临床应用的巨大潜力.  相似文献   

11.
利用明胶与海藻酸钠协同固定葡萄糖氧化酶(GOD),研究固定化酶对葡萄糖的催化反应.结果表明:在海藻酸钠质量浓度为2%,海藻酸钠与明胶配比是8∶1,氯化钙质量浓度是6%,酶用量为1.0%,固定化时间为30 min,固定化温度为35℃,固定化p H为6.0,海藻酸钠与明胶协同固定化GOD的活力回收率为85.76%;固定化GOD重复使用7次后,酶活力回收率仍保持在32%以上,显示出良好的操作稳定性.  相似文献   

12.
通过合理转化残余铁(Fe)在聚吡咯(PPY)纳米粒子原位生产了磁性四氧化三铁(Fe_3O_4)晶体,从而合成PPY@Fe_3O_4纳米粒子.得到的PPY@Fe_3O_4纳米粒子具有突出的横向弛豫时间(T_2)加权磁共振成像(MRI)效果和良好的光热性能,在肿瘤的诊断和治疗中具有良好的应用前景.  相似文献   

13.
使用葡萄糖糖氧化酶(GOD)和漆酶(Lac)分别做酶生物燃料电池的阳极与阴极,构成了GOD/Lac酶生物燃料电池.首先通过循环伏安法研究了酶生物燃料电池阳极催化剂GOD和阴极催化剂Lac在碳布基底电极上的直接电化学行为,结果表明:GOD与Lac在该修饰电极上均完成了一个直接、可逆的电化学过程,保持了自身的生物学活性,为成功构成GOD/Lac酶生物燃料电池提供一个必要条件.其二,采用葡萄糖作为GOD/Lac酶生物燃料电池的阳极燃料,氧气(O2)作为GOD/Lac酶生物燃料电池的阴极燃料,使用充放电仪测得该GOD/Lac酶生物燃料电池在38.5 mV处的最大输出功率密度为0.108μW·cm-2,电流密度为2.75uμA·cm-2.  相似文献   

14.
将实验动物分为光热治疗组、光动力治疗组、光热和光动力协同治疗组,使用T2加权和扩散加权两种磁共振成像方式对治疗效果进行实时监测,并使用病理学方法对磁共振检测效果进行验证.实验结果发现,两个单纯治疗组中肿瘤并未被完全杀灭;而协同治疗组中,肿瘤被完全杀灭.磁共振作为无创监测手段,在疗效评价中有巨大的应用价值,并可对纳米粒子的设计合成起到指导作用.  相似文献   

15.
将聚乙二醇(SH-PEG)修饰在单层MoS 2纳米片表面并进一步接枝聚乙烯亚胺(PEI),用以连接透明质酸(HA),从而构建一种新的HA-PEI-LA-MoS 2-SH-PEG纳米药物递送系统。用透射电镜、傅里叶变换红外光谱仪、紫外可见分光光度计、Zeta电位分析仪、动态光散射仪等仪器表征材料的形貌及理化性质。使用盐酸阿霉素(DOX)作为模型药物,研究复合物HA-PEI-LA-MoS 2-SH-PEG@DOX的体外药物释放行为。同时,在二硫化钼纳米复合物上负载一种新型的光热剂黑色素(Mel),研究其体外光热效果。结果表明:制备的纳米复合材料HA-PEI-LA-MoS 2-SH-PEG@(DOX/Mel)具有pH和近红外光(NIR)双重刺激响应药物释放的性能;黑色素的加载显著提高了MoS 2纳米复合物的光热效果,具有应用于肿瘤化学光热协同治疗的前景。  相似文献   

16.
利用纳米载体实现药物向恶性肿瘤组织的靶向输送,是当前的一个研究热点。但目前报道的各类有机无机纳米载药体系存在一些不足之处,如生物相容性不好、载药量低、重复性差等问题。近年来,一种由疏水基团修饰的核酸两亲性化合物组装得到的胶束或脂质体结构,因其优良的生物相容性和高的药物包封能力,被认为是最具临床应用潜力的纳米载药系统之一。在此,我们总结了由核酸两亲性化合物组装得到的不同类型的纳米载体及其在抗癌领域的应用,分析了这些纳米组装体在负载药物用于癌症治疗时的优势和不足。最后,讨论并展望了基于核酸两亲性化合物的纳米载药体系在协同抗癌领域的未来发展趋势。  相似文献   

17.
肿瘤已成为死亡率最高的疾病之一,严重威胁人类的健康。纳米技术尤其是纳米药物相关技术的发展为肿瘤的治疗带来众多新的潜在治疗选项。诸如纳米粒子、脂质体以及聚合物-药物偶联物等多种纳米药物体系均得到了大量研究和关注,多种聚合物被成功应用于抗肿瘤纳米药物的开发过程中。聚(N-(2-羟丙基)甲基丙烯酰胺)(PHPMA)因具有良好的生物相容性、结构多样性以及较优异的"隐身"能力而被广泛应用于纳米药物的设计与合成中。本文综述了学界及本课题组关于PHPMA纳米药物的研究进展及其在肿瘤治疗中的潜在应用,在此基础上进一步阐释了聚合物的组成和结构对其生物学性能的影响。相关构效关系的明确可为基于PHPMA高效纳米药物的设计提供新的思路。  相似文献   

18.
以实验室合成的纳米氧化铋(BiOx)为载体,经戊二醛交联,将葡萄糖氧化酶(GOD)固定于铂盘电极表面,从而构筑新型葡萄糖生物传感器.所得修饰电极利用扫描电镜(SEM)、红外光谱(IR)和电化学交流阻抗(EIS)等方法进行了详细表征.扫描电镜显示纳米氧化铋由大量具有二维片状纳米结构和一维纳米线组成;氧化铋纳米片厚度为80~110 nm,并具有亚微米和微米级别的横向尺寸;氧化铋纳米棒、线的直径约为40~50 nm.实验结果表明,构筑传感器的最佳条件为:GOD与BiOx的质量比为2:1,酶固载量为30 μg.同时还考察了溶液pH以及操作电位对传感器响应电流的影响.该传感器在0.5 V(VS.SCE)电位下检测葡萄糖,线性范围为l×10-3~1.5 mmol/L,检出限为0.4μmoVL(信噪比为3),酶催化反应的表观米氏常数为2.88 mmol/L.同时该传感器还表现出响应迅速(5 S)、重现性好、使用寿命长等优点.  相似文献   

19.
肿瘤发病率的逐年上升,严重威胁着人类的健康和生命,在人类与癌症斗争的过程中发展出了许多具有治疗前景的纳米治疗平台.其中,磁性介孔二氧化硅纳米球(MAG-MSNs)被认为是一种具有研究前景的纳米材料.MAG-MSNs具有易制备、低成本、易改性、生物安全性高等特点,提高了材料的性能,使得材料在光热治疗(PTT)肿瘤及化学动力学治疗(CDT)肿瘤等方面具备了一定的应用前景.综述了具有核壳结构MAG-MSNs的结构特点与制备方法,以及其在肿瘤治疗领域中的研究进展.  相似文献   

20.
光热疗法(PTT)在癌症治疗领域是一种非常有前途的治疗方法 .综述了近红外(NIR)光活化金纳米棒(Au NRs)在光热协同治疗肿瘤方面的最新进展.介绍了其在近红外一区(NIR-I)和近红外二区(NIR-Ⅱ)的光热潜力,及其在NIR-Ⅱ的窗口协同化学疗法(CT)、光动力学疗法(PDT)、化学动力学疗法(CDT)在对癌症的多模式治疗中的应用.此外,还讨论了该领域存在的挑战,为开发新型的NIR-Ⅱ光热剂提供了思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号