首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane protein function is determined by the relative organization of the protein domains with respect to the membrane. We have experimentally verified the topology of a protein with diverse orientations arising from a single primary sequence (the cellular prion protein, PrPC), a novel somatostatin truncated receptor, and the Golgi-associated protein GPBP91. Tagging with fluorescent proteins (FP) allows location of their expression at the plasma membrane or at endomembranes, but does not inform about their orientation. Exploiting the pH dependency of some FPs, we developed a pH exchange assay in which extracellularly exposed FPs are quenched by application of low pH buffer. We constructed standards to demonstrate and calibrate the assay, and the method was adapted for acidic organelle membrane proteins. This method can serve as a proof of concept, experimentally confirming and/or discriminating in living cells among theoretical topology predictions, providing the proportion of inside/outside orientation for proteins with multiple forms.  相似文献   

2.
L Wassilewa  D Nachkov 《Experientia》1975,31(12):1397-1398
Treatment of NDV with anionic detergents or lipid solvents destroys the activities of hemagglutinin and neuraminidase. After disruption of the virus with non-ionic detergents, the activities of envelope proteins remain unchanged. It is suggested that the phosholipids are very important for the biological activity of NDV-envelope proteins.  相似文献   

3.
A protein is purified by differential centrifugation from membrane fragments rich in acetylcholine receptor prepared from Torpedo marmorata electric organ after dissolution by a mixture of non denaturing detergents. After polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and Coomassie blue staining the purified protein yields a single band of apparent molecular weight 43,000. Spectroscopic experiments carried out in the absence of Ca++ and detergents reveal that the 43 K protein interacts with the fluorescent local anesthetic quinacrine and with the frog toxin histrionicotoxin (apparent KD : 7 X 10(-7) M) but not with carbamylcholine and the alpha toxin from N. nigricollis.  相似文献   

4.
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.  相似文献   

5.
The effects of these four detergents (two non-ionic: Titron X100 and Tween 80, two ionic: sodium cholate and sodium dedeoxycholate) upon the respiratory intensities of mitochondria and upon the ADP/0 and respiratory control ratios were observed. At low concentrations and in the absence of exogenous ADP, non ionic as well as ionic detergents provoked a threefold (or fourfold) increase of the respiratory intensities of mitochondria. At higher concentrations, the four detergents were inhibitory for mitochondrial oxidations in the order: Triton X 100 greater than DOC greater than cholate greater than Tween 80. At increasing doses, the four detergents progressively decreased the phosphorylating capacities of mitochondria.  相似文献   

6.
A protein kinase activity has been detected in two strains of murine Oncornaviruses, MSV/MLV and EFV. This activity phosphorylates not only endogenous viral proteins but also exogenous substrates (histones and phosvitin). The stimulation of enzyme activity by detergents along with the increase of specific activity in viruses treated with trypsin during purification suggest that the enzyme is located in the viral particle.  相似文献   

7.
The Membrane Protein Data Bank (MPDB) is an online, searchable, relational database of structural and functional information on integral, anchored and peripheral membrane proteins and peptides. Data originates from the Protein Data Bank and other databases, and from the literature. Structures are based on X-ray and electron diffraction, nuclear magnetic resonance and cryoelectron microscopy. The MPDB is searchable online by protein characteristic, structure determination method, crystallization technique, detergent, temperature, pH, author, etc. Record entries are hyperlinked to the PDB and Pfam for viewing sequence, three-dimensional structure and domain architecture, and for downloading coordinates. Links to PubMed are also provided. The MPDB is updated weekly in parallel with the Protein Data Bank. Statistical analysis of MPDB records can be performed and viewed online. A summary of the statistics as applied to entries in the MPDB is presented. The data suggest conditions appropriate for crystallization trials with novel membrane proteins. Received 3 August 2005; received after revision 18 September 2005; accepted 26 September 2005 This paper and the Membrane Protein Data Bank celebrate the 20th anniversary of the landmark paper in Nature (1985, 318: 618–624) describing the first ‘high-resolution’ three-dimensional structure of a membrane protein, the photosynthetic reaction center from Rhodopseudomonas (Blastochloris) viridis.  相似文献   

8.
Membrane proteins are key elements in cell physiology and drug targeting, but getting a high-resolution structure by crystallographic means is still enormously challenging. Novel strategies are in big demand to facilitate the structure determination process that will ultimately hasten the day when sequence information alone can provide a three-dimensional model. Cell-free or in vitro expression enables rapid access to large quantities of high-quality membrane proteins suitable for an array of applications. Despite its impressive efficiency, to date only two membrane proteins produced by the in vitro approach have yielded crystal structures. Here, we have analysed synergies of cell-free expression and crystallisation in lipid mesophases for generating an X-ray structure of the integral membrane enzyme diacylglycerol kinase to 2.28-Å resolution. The quality of cellular and cell-free-expressed kinase samples has been evaluated systematically by comparing (1) spectroscopic properties, (2) purity and oligomer formation, (3) lipid content and (4) functionality. DgkA is the first membrane enzyme crystallised based on cell-free expression. The study provides a basic standard for the crystallisation of cell-free-expressed membrane proteins and the methods detailed here should prove generally useful and contribute to accelerating the pace at which membrane protein structures are solved.  相似文献   

9.
The two-dimensional electrophoretic patterns of nuclear proteins and their tyrosine phosphorylation were compared for HL-60 cells before and after differentiation induction to granulocytes by dimethyl sulfoxide, all-trans retinoic acid and N 6,O 2-dibutyryl adenosine 3′5′-cyclic monophosphate. Regardless of the inducer used, some nuclear proteins, which are tyrosine-phosphorylated in proliferating HL-60 cells, undergo gradual dephosphorylation 12–72 h after induction of differentiation, followed by drastic dephosphorylation during maturation to granulocytes. At least 13 nuclear proteins with a molecular mass of 35–110 kDa are dephosphorylated, and 6 nuclear proteins undergo tyrosine phosphorylation. Analysis of the nuclear proteins differentially extracted by salt and detergents indicates that changes in their tyrosine phosphorylation during the maturation stage of differentiating granulocytes occur mainly in proteins which are abundant in nucleoplasm, chromatin and residual nuclear structures. The abundance of these proteins, residing in the nuclear structures, and their long-term modification in phosphorylation during the maturation stages of differentiation strongly suggest that tyrosine phosphorylation of these proteins is involved in reorganization of the differentiating cell nucleus. Received 21 September 1998; received after revision 24 November 1998; accepted 3 December 1998  相似文献   

10.
11.
Various methods have been established for the purpose of identifying and characterizing protein–protein interactions (PPIs). This diverse toolbox provides researchers with options to overcome challenges specific to the nature of the proteins under investigation. Among these techniques is a category based on proximity-dependent labeling of proteins in living cells. These can be further partitioned into either hypothesis-based or unbiased screening methods, each with its own advantages and limitations. Approaches in which proteins of interest are fused to either modifying enzymes or receptor sequences allow for hypothesis-based testing of protein proximity. Protein crosslinking and BioID (proximity-dependent biotin identification) permit unbiased screening of protein proximity for a protein of interest. Here, we evaluate these approaches and their applications in living eukaryotic cells.  相似文献   

12.
13.
Nitrosative and oxidative stress, associated with the generation of excessive reactive oxygen or nitrogen species, are thought to contribute to neurodegenerative disorders. Many such diseases are characterized by conformational changes in proteins that result in their misfolding and aggregation. Accumulating evidence implies that at least two pathways affect protein folding: the ubiquitin-proteasome system (UPS) and molecular chaperones. Normal protein degradation by the UPS can prevent accumulation of aberrantly folded proteins. Molecular chaperones – such as protein-disulfide isomerase, glucose-regulated protein 78, and heat shock proteins – can provide neuroprotection from aberrant proteins by facilitating proper folding and thus preventing their aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Here, we present evidence for the hypothesis that nitric oxide contributes to degenerative conditions by S-nitrosylating specific chaperones or UPS proteins that would otherwise prevent accumulation of misfolded proteins. Received 5 December 2006; received after revision 7 February 2007; accepted 15 March 2007  相似文献   

14.
Dependence receptors: between life and death   总被引:2,自引:0,他引:2  
The recently described family of dependence receptors is a new family of functionally related receptors. These proteins have little sequence similarity but display the common feature of inducing two completely opposite intracellular signals depending on ligand availability: in the presence of ligand, these receptors transduce a positive signal leading to survival, differentiation or migration, while in the absence of ligand, the receptors initiate or amplify a negative signal for apoptosis. Thus, cells that express these proteins manifest a state of dependence on their respective ligands. The mechanisms that trigger cell death induction in the absence of ligand are in large part unknown, but typically require cleavage by specific caspases. In this review we will present the proposed mechanisms for cell death induction by these receptors and their potential function in nervous system development and regulation of tumorigenesis.Received 19 December 2003; received after revision 19 February 2004; accepted 26 February 2004  相似文献   

15.
Intrinsic disorder (i.e., lack of a unique 3-D structure) is a common phenomenon, and many biologically active proteins are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions constitute a significant part of all proteomes, and their functional repertoire is complementary to functions of ordered proteins. In fact, intrinsic disorder represents an important driving force for many specific functions. An illustrative example of such disorder-centric functional class is RNA-binding proteins. In this study, we present the results of comprehensive bioinformatics analyses of the abundance and roles of intrinsic disorder in 3,411 ribosomal proteins from 32 species. We show that many ribosomal proteins are intrinsically disordered or hybrid proteins that contain ordered and disordered domains. Predicted globular domains of many ribosomal proteins contain noticeable regions of intrinsic disorder. We also show that disorder in ribosomal proteins has different characteristics compared to other proteins that interact with RNA and DNA including overall abundance, evolutionary conservation, and involvement in protein–protein interactions. Furthermore, intrinsic disorder is not only abundant in the ribosomal proteins, but we demonstrate that it is absolutely necessary for their various functions.  相似文献   

16.
Stress proteins in neural cells: functional roles in health and disease   总被引:11,自引:0,他引:11  
Heat shock proteins (HSPs) or stress proteins participate in protein synthesis, protein folding, transport and translocalization processes. Stress situations trigger a heat shock response leading to their induction. Similarly, they can be upregulated by impairment of the proteasomal degradation pathway. The upregulation of stress proteins is an important step in prevention of protein aggregation and misfolding after stress, and also is essential during development and differentiation. A number of HSPs are constitutively or inducibly expressed in the nervous system and connected to protection of nerve cells and glia. The cytoskeleton is affected by stress, and HSPs have been shown to interact with the cytoskeleton in normal cells and to assist proper assembly, spatial organization and cross-linking properties. The integrity of the cytoskeleton is disturbed in many neurodegenerative disorders, and filamentous cytoplasmic inclusion bodies, containing a variety of HSPs, are observed. This review summarizes the recent literature on the presence and induction of HSPs in neural cells, and their possible functional roles in health and disease are discussed.  相似文献   

17.
The clathrin-associated adaptor protein (AP) complexes drive the polymerization of clathrin in coated pits to form coated vesicles. It has previously been shown that the carboxyl-terminal hinge/ear domain of the β2 chain contains a binding site for clathrin and that removal of this domain from APs or from isolated β2 chains abrogates their ability to form clathrin coats in vitro. We show here that the hinge/ear domain is necessary for efficient incorporation of AP complexes into coated pits and coated vesicles in cells, a result that is consistent with the view that the β chains indeed provide an important interaction between the AP complexes and clathrin. Received 7 April 1997; received after revision 22 May 1997; accepted 28 May 1997  相似文献   

18.
Membrane protrusions, like lamellipodia, and cell movement are dependent on actin dynamics, which are regulated by a variety of actin-binding proteins acting cooperatively to reorganize actin filaments. Here, we provide evidence that Swiprosin-1, a newly identified actin-binding protein, modulates lamellipodial dynamics by regulating the accessibility of F-actin to cofilin. Overexpression of Swiprosin-1 increased lamellipodia formation in B16F10 melanoma cells, whereas knockdown of Swiprosin-1 inhibited EGF-induced lamellipodia formation, and led to a loss of actin stress fibers at the leading edges of cells but not in the cell cortex. Swiprosin-1 strongly facilitated the formation of entangled or clustered F-actin, which remodeled the structural organization of actin filaments making them inaccessible to cofilin. EGF-induced phosphorylation of Swiprosin-1 at Ser183, a phosphorylation site newly identified using mass spectrometry, effectively inhibited clustering of actin filaments and permitted cofilin access to F-actin, resulting in actin depolymerization. Cells overexpressing a Swiprosin-1 phosphorylation-mimicking mutant or a phosphorylation-deficient mutant exhibited irregular membrane dynamics during the protrusion and retraction cycles of lamellipodia. Taken together, these findings suggest that dynamic exchange of Swiprosin-1 phosphorylation and dephosphorylation is a novel mechanism that regulates actin dynamics by modulating the pattern of cofilin activity at the leading edges of cells.  相似文献   

19.
20.
Membrane trafficking is crucial in the homeostasis of the highly compartmentalized eukaryotic cells. This compartmentalization occurs both at the organelle level, with distinct organelles maintaining their identities while also intensely interchanging components, and at a sub-organelle level, with adjacent subdomains of the same organelle containing different sets of lipids and proteins.Acentral question in the field is thus how this compartmentalization is established and maintained despite the intense exchange of components and even physical continuities within the same organelle. The phosphorylated derivatives of phosphatidylinositol, known as the phosphoinositides, have emerged as key components in this context, both as regulators of membrane trafficking and as finely tuned spatial and temporal landmarks for organelle and sub-organelle domains. The central role of the phosphoinositides in cell homeostasis is highlighted by the severe consequences of the derangement of their metabolism caused by genetic deficiencies of the enzymes involved, and from the systematic hijacking of phosphoinositide metabolism that pathogens operate to promote their entry and/or survival in host cells. (Part of a Multi-author Review)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号