首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zircom U-Pb age and Hf isotope analyses were made on gneissic granite and garnet-mica two-feldspar gneiss from the Helanshan Group in the Bayan Ul-Helan Mountains area, the western block of the North China Craton (NCC). Zircons from the gneissic granite commonly show core-mantle-rim structures, with magmatic core, metamorphic mantle and rim having ages of 2323±20 Ma, 1923±28 Ma and 1856±12 Ma, respectively. The core, mantle and rim show similar Hf isotope compositions, with single-stage depleted mantle model ages (TDM1) of 2455 to 2655 Ma (19 analyses). Most of the detrital zircons from the garnet-mica two-feldspar paragneiss have a concentrated U-Pb age distribution, with a weighted mean 207Pb/206Pb age of 1978±17 Ma. A few detrital zircons are older (2871 to 2469 Ma). The age for metamorphic overgrown rim was not determined because of strong Pb loss due to their high U content. The zircons show large variation in Hf isotope composition, with TDM1 ages of 1999 to 3047 Ma. In com- bination with previous studies, the main conclusions are as follows: (1) protolith of the khondalite se- ries in the Helanshan Group formed during Palaeoproterozoic rather than the Archaean as previously considered; (2) The results lend support to the contention that there is a huge Palaeoproterozoic Khondalite (metasedimentary) Belt between the Yinshan Mountains Block and the Ordos Block in the Western Block of NCC; (3) The widely-distributed bodies of early Palaeoproterozoic orthogneisses in the Khondalite Belt might be one of the important sources for detritus material in the khondalite series; (4) Collision between the Yinshan Block, the Ordos Block and the Eastern Block occurred in the same tectonothermal event of late Palaeoproterozoic, resulting in the final assembly of the NCC.  相似文献   

2.
Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin   总被引:23,自引:0,他引:23  
Zircon LA-ICP MS U-Pb dating of six metamorphic rocks and a metagranite (breccia) from southern basement of the Songliao Basin are reported in order to constrain the formation ages of basement. The basement metamorphic rocks in the Songliao Basin mainly consist of metagabbro (L45-1), amphibolite (SN117), metarhyolitical tuff (G190), sericite (Ser) schist (N103), chlorite (Chl) schist (T5-1), biotite (Bi)-actinolite (Act)-quartz (Q) schist (Y205), and metagranite (L44-1). The cathodoluminesence (CL) images of the zircons from metagabbro (L45-1) and metagranite (L44-1) indicate that they have cores of magmatic origin and rims of metamorphic overgrowths. Their U-Pb isotopic ages are 1808±21 Ma and 1873±13 Ma, respectively. The zircons with oscillatory zoning from amphibolite (SN117) and Chl schist (T5-1), being similar to those of mafic igneous rocks, yield ages of 274 ± 3.4 Ma and 264 ± 3.2 Ma, re-spectively. The zircons from metarhyolitical tuff (G190) and Ser schist (N103) display typical magmatic growth zoning and yield ages of 424 ± 4.5 Ma and 287 ± 5.1Ma, respectively. Most of zircons from Bi-Act-Q schist (Y205) are round in shape and different in absorption degree in the CL images, implying their sedimentary detritals. U-Pb dating yield concordant ages of 427 ± 3.1Ma, 455 ± 12 Ma, 696 ± 13 Ma, 1384±62 Ma, 1649±36 Ma, 1778±18 Ma, 2450±9 Ma, 2579±10 Ma, 2793±4 Ma and 2953±14 Ma. The above-mentioned results indicate that the Precambrian crystalline basement (1808―1873 Ma) exists in the southern Songliao Basin and could be related to tectonic thrust, and that the Early Paleozoic (424―490 Ma) and Late Paleozoic magmatisms (264―292 Ma) also occur in the basin basement, which are consistent with the ages of the detrital zircons from Bi-Act-Q schist in the basement.  相似文献   

3.
Zircon U-Pb ages of the basement rocks beneath the Songliao Basin, NE China   总被引:12,自引:1,他引:11  
The basement of the Songliao Basin is mainly composed of slightly-metamorphosed or unmetamorphosed Paleozoic strata, granites and gneiss. Petrographical studies indicate that the gneiss was originally the granitic intrusions which were deformed in the later stage. One undeformed granitic rock sample gives a U-Pb age of (305±2) Ma, and the mylonitic granite yields a U-Pb age of (165±3) Ma. Both of the two samples contain no inherited zircon, which suggests that there is no large-scale Precambrian crystalline basement beneath the Songliao Basin.  相似文献   

4.
SHRIMP U-Pb zircon 207 Pb/206 Pb ages were obtained from two drill cores from the basement of the Ordos Basin.A garnet-sillimanite-biotite-plagioclase gneiss(QI1-1) from the western Ordos Basin basement yielded an average age of 2031 10 Ma.Based on the mineral assemblages,the source material of the gneiss is speculated to be pelitic-felsic system.A gneissic two-mica granite(Long1-1) from the eastern Ordos Basin basement yielded an average age of 2035 10 Ma.The zircons from both samples exhibit magmatic growth pattern.The shapes of the zircons suggest that the zircons should crystallize from a granitic of felsic volcanic terrain.The ages and the characters of zircons are consisitent with the other researches in the Ordos Basin and indicate that the basement of the Ordos Basin had experienced an intensive magmatic epsode during the late Paleoproterozoic period.The date from this study suggest the possible existences of a Paleoproterozoic mobile tectonic belt in the region.The reconstruction of such a belt is critical for understanding the tectonomagmatic evolution of the western block of the North China Craton.  相似文献   

5.
This note reports the SHRIMP U-Pb data of zircons from the Caledonian Xiongdian eclogite, western Dabie Mountains. Zircons from the rock occur mainly in garnet and other metamorphic minerals with sharp boundaries and exhibit textures growing under metamorphic conditions. Analyses of 7 grains give 206Pb/238U ages ranging from 335 to 424 Ma, showing a certain degree of radiogenic lead loss. This suggests a minimum age of (424±5) Ma for the metamorphic zircons, as well as the high-pressure metamorphic event. The outer peripheral zone of a zircon gives 206Pb/238U age of about 300 Ma. Combined with Sm-Nd, 40Ar-39Ar, U-Pb and 207Pb/206Pb ages, the peak metamorphism of the Xiongdian eclogite is documented between 424—480 Ma.  相似文献   

6.
The Gantaohe Group is an important early Precambrian unit in the Trans-North China Orogen,North China Craton,and is mainly composed of greenschist-facies metabasalt,meta-sandstone and dolomitic marble.We report whole-rock geochemical compositions and SHRIMP zircon ages as well as LA-ICP-MS Hf-in-zircon isotopeic analyses for metabasalts from the Gantaohe Group.SHRIMP dating yielded a weighted mean 207Pb/206Pb age of 2087±16 Ma(MSWD=1.3) for magmatic zircons,but there are also abundant ca.2.5 Ga inherited zircon xenocrysts.The magmatic zircons shows a large Hf(t) variation in Hf(t) from 7.17 to +0.45,suggesting an isotopically highly heterogeneous source for the metabasalt.Chemically all samples show no distinct Zr or Hf anomalies,and some samples show no Nd or Ta anomalies in a primitive mantle-normalized trace element variation diagram,and their whole-rock Nd(t) values range from 4.0 to 0.8.We suggest that the basalt is formed by partial melting of a depleted mantle source,followed by significant crustal contamination.Field observations,the presence of abundant inherited zircon,as well as isotope and trace elements geochemistry support formation of the Gantaohe Group on top of a continental basement.These data and the regional geology lead us to conclude that the Trans-North China Orogen constituted an intracontinental rift during the Paleoproterozoic that was connected to the Eastern Block since the end of the Archean.  相似文献   

7.
A set of metamorphic suites, previously known as the Precambrian metamorphic basement in Kuda, western Kunlun has been determined as a large nappe ductile shear zone which develops penetrative foliation, oriented stretching lineation, various but consistent kinematic indicators of thrusting from north to south. The microstructure and the supermicrostructure also display the ductile deformation characteristics, and the paleotectonic differential stress is obtained. The metamorphic age is 426–451 Ma dated by40Ar/39Ar method. According to tectonic background, it is a product of early Paleozoic accretionary wedge orogenesis in western Kunlun.  相似文献   

8.
李雨柯 《科学技术与工程》2012,12(25):6269-6277
内蒙古索伦地区位于贺根山-黑河断裂和西拉木伦河-长春-延吉断裂之间,该区发育巨厚的二叠系哲斯组地层。研究其年代学特征对确定该区大地构造背景具有重要的指示意义。哲斯组50颗碎屑锆石镜下具有典型岩浆锆石特征,年代学记录表现为4个峰值:(1)[(270±2)~(335±4)]Ma,峰期年龄为(272±2)Ma,与该区晚古生代岩浆活动一致;(2)[(363±3)~(429±3)]Ma,峰期年龄为(382±4)Ma,暗示其物源来自于松辽地块及其周边地区的加里东期岩浆事件;(3)[(507±5)~(555±6)]Ma,峰期年龄为(515±3)Ma,与东北地区各地块的泛非期变质基底年龄一致;(4)少量前寒武纪年龄分别为(847±7)Ma、(923±7)Ma、(1 342±14)Ma、(2 040±13)Ma,表明东北地区存在元古宙的结晶基底。上述碎屑锆石的年代学研究表明,以泛非期和新元古事件年龄为代表,说明研究区哲斯组的物源应来源于东北地区的变质基底,其中年轻一组谐和年龄(270±2)Ma限定了哲斯组的沉积下限为晚二叠世。由于哲斯组的物源均来自于东北地区的变质基底,推测华北和西伯利亚板块的缝合位置在西拉木伦河-长春-延吉一线。  相似文献   

9.
Zircon CL imaging and SHRIMP U-Pb dating were carried out for migmatite in the Dabie orogen. Zircons from the Manshuihe migmatite show clear core-rim structures. The cores display sector or weak zoning and low Th/U ratios of 0.01 to 0.17, indicating their precipitation from metamorphic fluid. They yield a weighted mean age of 137±5 Ma. By contrast, the rims exhibit planar or nebulous zoning with relatively high Th/U ratios of 0.35 to 0.69, suggesting their growth from metamorphic melt. They give a weighted mean age of 124±2 Ma. Zircons from the Fenghuangguan migmatite also display core-rim structures. The cores are weakly oscillatory zoned or unzoned with high Th/U ratios of 0.21 to 3.03, representing inherited zircons of magmatic origin that experienced different degrees of solid-state recrystallization. SHRIMP U-Pb analyses obtain that its protolith was emplaced at 768±12 Ma, consistent with middle Neoproterozoic ages for protoliths of most UHP metaigneous rocks in the Dabie-Sulu orogenic belt. By contrast, the rims do not show significant zoning and have very low Th/U ratios of 0.01 to 0.09, typical of zircon crystallized from metamorphic fluid. They yield a weighted 206Pb/238U age of 137±4 Ma. Taking the two case dates together, it appears that there are two episodes of zircon growth and thus migmati-tization at 137±2 Ma and 124±2 Ma, respectively, due to metamorphic dehydration and partial melting. The appearance of metamorphic dehydration corresponds to the beginning of tectonic extension thus to the tectonic switch from crustal compression to extension in the Dabie orogen. On the other hand, the partial melting is responsible for the extensional climax, resulting in formation of coeval migmatite, granitoid and granulite. They share the common protolith, the collision-thickened continental crust of mid-Neoproterozoic ages.  相似文献   

10.
The Xilin Gol Complex was referred to the meta-morphic rocks exposed near Daqing Pasturage, east of Xilinhot, for the first time by the Hebei Geological Survey in 1958[1]. Similar metamorphic rocks have been increas-ingly identified in the Xilin Gol-Xiwuqi-Balinyouqi re-gion since then. They all are collectively grouped into the Xilin Gol Complex and considered as a part of the Bao- yintu Group (Pt1by)[1]. However, the timing of its deposi-tion and subsequent deformation and metamorphi…  相似文献   

11.
In order to constrain the formation time of high-grade metamorphic rocks in the Qilian Mountains, U-Pb zircon dating was carried out by using LA-ICPMS technique for a paragneiss of the Hualong Group in the Qilian Mountains basement series and a weakly foliated granite that intruds into the Hualong Group. Zircons from the paragneiss consist dominantly of detrital magma zircons with round or sub-round shape. They have 207Pb/206Pb ages mostly ranging from 880 to 900 Ma, with a weighted mean age of 891 ±9 Ma, which is interpreted as the magma crystallization age of its igneous provenance and can be taken as a lower age limit for the Hualong Group. Magma crystallization age for the weak-foliated granite is 875±8 Ma, which can be taken as an upper age limit for the Hualong Group. Accordingly, the formation time of the Hualong Group is constrained at sometime between 875 and 891 Ma. A few zir- cons from both paragneiss and weak-foliated granite display old inherited ages of 1000 to 1700 Ma and young metamorphic ages of Early Paleozoic. The zircon age distribution pattern confirms that the Qilian Mountains and the northern margin of Qaidam Basin had a united basement, with geotectonic affinity to the Yangtze Block. The results also reveal that sediments of the Hualong Group formed by rapid accumulation due to rapid crustal uplift-erosion. This process may result from intensive Neoproterozoic orogenesis due to assembly of the suppercontinent Rodinia.  相似文献   

12.
Miao  Laicheng  Fan  Weiming  Zhang  Fuqing  Liu  Dunyi  Jian  Ping  Shi  Guanghai  Tao  Hua  Shi  Yuruo 《科学通报(英文版)》2004,49(2):201-209
Located in the eastern portion of the Xing'an-Mongolian Orogenic Belt (XMOB), the Xinkailing-Kele complex has previously been considered to be Precambrian metamorphic rocks, mainly according to its relatively high metamorphic grade. Our filed observation, however, revealed that the complex is composed mainly of metamorphic rocks (Kele complex), tectono-schists ("Xinkailing Group"), and granitoids (Xinkailing granitic complex). Dating on these rocks using advanced SHRIMP zircon U-Pb technique indicates that: (1) Biotite-plagioclase gneiss from the Kele complex has a protolith age of 337±7 Ma (2σ) and a metamorphic age of 216±3 Ma (2σ); (2) the tectono-schist of the "Xinkailing Group" gave a magmatic age of 292±6 Ma (2σ), indicative of felsic volcanic protolith of the schist formed in late Paleozoic time; and (3) the Menluhedingzi and Lengchuan granites of the Xinkailing granitic complex were emplaced at 167±4 (2σ) and 164±4 Ma (2σ), respectively. These results suggest that the Xinkailing-Kele complex is not Precambrian metamorphic rocks and the so-called Precambrian "Nenji-ang Block" does essentially not exist. In combination with regional geological data, we propose that the Kele metamorphic complex is likely related to a collisional tectonism that took place in Triassic time, as indicted by its metamorphic age of 216±3 Ma. The Xinkailing granitic complex was em-placed along the collisional zone during Mid-Jurassic time, likely in a post-orogenic or anorogenic setting.  相似文献   

13.
Geological records of Neoproterozoic magmaticevents have recently been identified in the central Phanerozoic orogenic belts of China[1]. In regions of east Qinling orogen[2], Dabie-Sulu orogen[3], north Qaidam Basin orogen[4―6], and southwest Tarim Basin…  相似文献   

14.
The existence of pelitic granulite in the Altai orogen was confirmed for the first time by detailed petrographic research and P-Tpseudosection modeling. The pelitic granulite has the assemblage of garnet + cordierite + K-feldspar + biotite + sillimanite + plagioclase + quartz with some samples containing the paragenesis of cordierite + spinel. Peak conditions of the pelitic granuUte determined from the P-T pseudosection involved P = 0.5-0.6 GPa, T= 780-800℃ belonging to medium- to low-pressure type. SHRIMP U-Pb dating of zircon presented a metamorphic age of 292.8 ± 2.3 Ma. The discovery of pelitic granulite reflects an extensional environment with high heat flow in the southern margin of the Altai orogen during the Early Permian, which provides an important petrological constraint on the evolution of the Altai orogen.  相似文献   

15.
In situ U-Pb dating of xenotime by laser ablation (LA)-ICP-MS   总被引:1,自引:0,他引:1  
Xenotime is an ideal mineral for U-Th-Pb isotopic dating because of its relatively high U and Th contents, but typically low concentration of common Pb. These characteristics, and the fact that it is widespread throughout various types of rocks, suggest that the U-Th-Pb dating of xenotime has broad applications. Studies of U-Pb dating on xenotime by ion microprobe (such as SHRIMP) have increased in recent years, whereas studies by laser ablation (LA)-ICP-MS are still rare. In this study, we developed a technique for U-Pb dating of xenotime using the 193 nm ArF laser-ablation system and Agilent 7500a Q-ICP-MS. To evaluate the reliability of our method, a xenotime standard, BS-1, was analyzed and calibrated against another xenotime standard, MG-1. The weighted mean 206 Pb/ 238 U ages of 510.1 ± 5.2 Ma (2 n = 21), 509.8 ± 4.3 Ma (2 n = 21) and 510.0 ± 4.6 Ma (2 n = 21) were obtained using beam diameters of 16, 24 and 32 m, respectively. These ages are identical to those determined by ID-TIMS method (weighted mean 206 Pb/ 238 U age of 508.8 ± 1.4 Ma), which supports the reliability of our LA-ICP-MS method. We also analyzed xenotimes in leucogranites from South Tibet and granites from Xihuashan in southern China, and obtained accurate and precise ages. Nevertheless, we observed systematic differences in Pb/U fractionation among xenotime, monazite and zircon. The matrix-effect resulted in either under-correction or over-correction of fractionation, and thus led to inaccurate ages. Thus, a matrix-matched material is required for U-Pb dating of xenotime by LA-ICP-MS.  相似文献   

16.
Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt. Based on this tectonic explanation, the North Qilian ophiolites should represent parts of lithosphere from the Proto-Tethyan Ocean. Lithological and geochronological evidence also indicates that the Qilian Block underwent continental reactivation possibly induced by the deep northward subduction of the North Qaidam Block in early Paleozoic time.  相似文献   

17.
Basalt and basaltic andesite metamorphosed at greenschist facies occurs with conglomerate layers at the bottom of the Paleopro-terozoic Hutuo Group in the Wutai Mountains area, North China Craton. Detailed geological surveying confirms that these volcanic rocks are conformable within the neighboring sedimentary rocks. The SHRIMP results on basaltic andesite are divided into two groups. In one group the 207Pb/206Pb ages are from 2433 to 2558 Ma, which is consistent with the basement crustal age in Fuping and Wutai areas. In the other group, 13 grains yielded a weighted mean 207Pb/206Pb age of 2140±14 Ma. The latter is interpreted as the eruption age of the basaltic andesite, and gives the age of the base of the Hutuo Group. This result further suggests that the Hutuo Group formed in the middle Paleoproterozoic, not the early Palaeoproterozoic or late Archaean, as thought before, and is related to a 2.2–2.1 Ga rifting event in the Central North China Craton.  相似文献   

18.
Knowledge of the mineralizing timing is fundamen-tal to understand the genesis of mineral deposits, and ex-act time spectrum of mineralization is essential to com-prehending the relationship among the genesis of en-dogenic hydrothermal deposits, regional tectonic-magma-tism event and the geodynamics of mineral deposits. The Jiaodong or eastern Shandong gold province islocated in the southeastern margin of the North Chinacraton, and belongs to the Mesozoic circum-Pacific oro-genic gold system…  相似文献   

19.
Despite many studies concerning the forming age, evolution characteristics and the age of petroleum charging in the Fuxin upheaval of southern Songliao Basin, no consensus has been reached so far. This paper presents the first K-Ar dating of autogenetic illite from stratigraphic petroleum reservoirs in the Fuyu oil layer of the Fuxin upheaval belt. Isotopic test and age calculation were carried out based on the separation and purification of illite mineral, X-diffraction analysis and the detection of scanning electron microscopy. The evolution characteristics of structure, sedimentation, reservoir-forming about the Fuxin upheaval belt were interpreted in terms of the synthetical analysis of "six-type geological history" evolution in southern Songliao Basin. The geologic background of petroleum evolution and reservoir formation are similar in the entire central depression region of southern Songliao Basin. The Changling sag and the Fuxin upheaval belt brought about obvious upheaval-sag separation after the hydrocarbon-generation peak of K2qn^1 and the main reservoir-forming period of the Fuyu oil layer, namely reservoir-forming happened before the Fuxin upheaval belt extensively raised. The reservoirs have three characteristics: the hydrocarbon source rock above the reservoir, the oil source in the locality, and the vertical migration. The geological cognition is corrected, that is, oil source came from the Changling sag and migrated from the side direction. The bulk process of petroleum charging in the stratigraphic hydrocarbon reservoirs in the Fuxin upheaval belt of southern Songliao Basin is determined according to the isotopic age of autogenetic illite in combination with the method of fluid inclusions. The cognition is helpful to exactly evaluate the resource potential and exploration direction in the Fuxin upheaval belt, Changling sag and their peripheral areas. The present results indicate that the combination of the two methods (the K-Ar dating of autogenetic illite and fluid inclusions) is an effective way to lay bare petroleum charging history and ascertain reservoir age.  相似文献   

20.
The orogenic belt of northern China is characterized by widely developed postorogenic Ⅰ fractionated and A-type granites in the Phanerozoic. The isotopic data display relatively high ε Nd(t) and 206Pb/ 204Pb values and low I Sr ratio. The low T DM model ages (<100 Ma) suggest that the Neo-Proterozoic-Phanerozoic is one of the main stages in the continental growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号