首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
通过对水泥物理性能和泌水性的测定,研究了二水石膏对不同窑型水泥性能的影响.研究结果表明,二水石膏对不同窑型水泥的凝结时间的影响类似,对立窑熟料的敏感性要大于回转窑熟料.当二水石膏掺量达到一定量后,石膏的缓凝作用开始表现出来,水泥的凝结时间正常,随着二水石膏掺量的增加,三种水泥泌水性呈增大趋势.石膏掺入量在 3%~4%可以获得较高的 3天和28天抗压强度,在合适的二水石膏掺入量下,混合水泥的泌水性和抗压强度均明显高于加权值,略低于回转窑水泥.  相似文献   

2.
研究了无水石膏掺量不同的硫铝酸盐水泥在5℃、20℃和40℃下的凝结时间、强度发展、干燥收缩率及水化产物等.结果表明:无水石膏虽能促进水化产物钙矾石的生成,但对硫铝酸盐水泥熟料水化的影响效果直接取决于养护温度——5℃下,无水石膏会显著延缓早期水化,使凝结时间大幅延长,早期强度显著降低;而20℃和40℃下作用效果相反,因为石膏的掺入能有效抑制高温下钙矾石向单硫型水化硫铝酸钙的转变,所以40℃下掺加石膏所得硫铝酸盐水泥砂浆的抗压强度较不掺时有不同程度的提升.  相似文献   

3.
探讨了石膏类型对道路硅酸盐水泥强度、凝结时间及水化热的影响,研究结果表明:SO3掺量达一定值后,其掺量的多少对水泥强度、凝结时间的影响已不明显,但从强度来看,以外掺SO3为1.5%左右为较佳.低温煅烧(700℃)所得的硬石膏制得的水泥比高温煅烧(1350℃)所得的硬石膏制得的水泥凝结时间短,强度高.二水石膏和硬石膏合掺能改善道路水泥的各项性能,一定范围内,随SO3掺量的增加,水泥的干缩率变小,耐磨性增强.掺二水石膏的水泥干缩率比掺硬石膏的水泥干缩率小,水化放热量稍低,半衰期减小.  相似文献   

4.
碱-粉煤灰-矿渣水泥作GRC胶结材的试验研究   总被引:2,自引:0,他引:2  
研究了影响碱-粉煤灰-碱矿渣水泥(AAFSC)的强度的因素.测定了其凝结时间。结果表明:当水玻璃掺量为3%,硅酸盐水泥熟料为5%以及适量减水剂,其28d抗压强度大于50MPa,且凝结时间正常。AAFSC浆体浸泡液的pH值随着水化龄期的生长而降低,SEM照片显示抗碱玻璃纤维在从FSC浆体中所受侵蚀极小。  相似文献   

5.
大掺量粉煤灰注浆充填材料试验研究   总被引:7,自引:0,他引:7  
为了解大掺量粉煤灰的水泥粉煤灰注浆材料的物理力学性能,通过室内试验,探讨了在大掺量粉煤灰情况下,不同水灰质量比,固相质量比及不同外加剂用量与硬化体抗压强度,浆体凝结时间,流动度、粘度、结石率之间的相互关系,试验表明,随粉煤灰掺量的增加,硬化体抗压强度、浆体流动度降低,而凝结时间延长,结石率和粘度增大;硬化体早期强度较低,后期强度有较大增长(120d后仍有所增长);适量水玻璃的掺入(水玻璃占水泥质量分数不大于3%)使凝结时间缩短,结石率增大,但导致硬化体抗压强度降低,浆体流动性变差;浆体凝结时间较长,水灰质量比(0.7-1.0):1.0,粉煤灰掺量质量分数为60%-90%时,初凝一般大于12h,终凝一般大于20h。  相似文献   

6.
探讨氯化钠对粉煤灰水泥不同阶段性能与水化程度的影响. 结果表明: 掺入适量的氯化钠可以不同程度地提高粉煤灰水泥不同龄期的水化程度与抗压强度而缩短其凝结时间; 当氯化钠掺量一定时, 随着粉磨时间的延长, 粉煤灰水泥不同龄期的水化程度与抗压强度均有不同程度的提高但增幅下降. 随着氯化钠掺量的增加, 粉煤灰水泥不同龄期的水化程度与抗压强度均先增加后下降, 但其凝结时间却先缩短后增加; 当氯化钠掺量为2%, 粉磨时间为15min时各龄期的水化程度与抗压强度均达到最大值, 而粉煤灰水泥的凝结时间最短. 粉煤灰水泥水化3d的水化程度与抗压强度的增幅最大, 而水化28d的相应增幅最小.  相似文献   

7.
探讨氯化钠对粉煤灰水泥不同阶段性能与水化程度的影响.结果表明:掺入适量的氯化钠可以不同程度地提高粉煤灰水泥不同龄期的水化程度与抗压强度而缩短其凝结时间;当氯化钠掺量一定时,随着粉磨时间的延长,粉煤灰水泥不同龄期的水化程度与抗压强度均有不同程度的提高但增幅下降.随着氯化钠掺量的增加,粉煤灰水泥不同龄期的水化程度与抗压强度均先增加后下降,但其凝结时间却先缩短后增加;当氯化钠掺量为2%,粉磨时间为15min时各龄期的水化程度与抗压强度均达到最大值,而粉煤灰水泥的凝结时间最短.粉煤灰水泥水化3d的水化程度与抗压强度的增幅最大,而水化28d的相应增幅最小.  相似文献   

8.
探讨三乙醇胺与硫酸钠复合对粉煤灰-水泥体系的抗压强度、凝结时间等性能与结构的影响.结果表明:将适量的硫酸钠与三乙醇胺复合掺入可以不同程度地提高粉煤灰-水泥早期与后期的抗压强度、缩短凝结时间,其水化产物中C-S-H凝胶与钙矾石晶体含量较多;粉煤灰-水泥早期与后期的抗压强度随着粉磨时间的增加均有所增加但增幅下降,其凝结时间随着粉磨时间的增加有所缩短;复合掺入后早期与后期的抗压强度均高于单掺,而其凝结时间短于单掺;当复合掺入量为三乙醇胺0.03%、硫酸钠2%、粉磨时间为15min时,粉煤灰-水泥早期与后期的抗压强度均为最高.  相似文献   

9.
对合肥地铁建设中所遇到的弱膨胀土,为了得到冻结水泥土的最佳水泥掺量,进行了8种不同掺入比和-10℃与8℃下的无侧限抗压强度试验。定义了水泥掺入效率,定量地研究了不同掺入区间水泥掺量对无侧限抗压强度的影响。根据试验结果,水泥改性和冻结都能明显提高土体强度,冻结条件下,水泥掺量超过15%后掺入效率由7%降到3%以下。8℃条件下,水泥掺量15%时水泥土无侧限抗压强度达到峰值。根据所得应力-应变曲线,水泥的掺入较大地降低了土体的延性,曲线由应变硬化型变为应变软化型。冻结能有效提高水泥土延性,其峰值应变由2%提高到7%以上。研究从强度和受力变形特性两方面总结了温度和水泥掺量对改性弱膨胀土性质的影响,证明了水泥改性和冻结法对土体的联合加固效果。  相似文献   

10.
针对水泥稳定全深式冷再生混合料的泌水、施工操作时间短、黏结力不足等诸多问题,通过在水泥胶砂试件中添加羟丙基甲基纤维素醚(HPMC),研究HPMC对水泥胶砂试件抗折及抗压强度的影响;进而探讨在再生混合料中掺入HPMC的可行性,重点研究了不同掺量的HPMC对水泥稳定全深式冷再生材料的性能影响。研究发现:HPMC由于引气作用会降低水泥水化后水泥胶砂试件的抗折及抗压强度;水泥在HPMC溶于水后的分散液中进行水化,与水泥先水化再掺入HPMC相比,水泥胶砂试件抗折及抗压强度有所增大。掺入HPMC,对水泥稳定全深式冷再生材料的无侧限抗压强度有削弱作用;再生混合料具有一定黏聚性能不易离析,且在常温及高温下保水性能较好,基本无泌水现象。  相似文献   

11.
王晓龙 《佳木斯大学学报》2009,27(6):873-874,877
采用矿渣与熟料分别粉磨再混合的方式,研究了不同掺量和不同细度的矿渣对水泥强度和凝结时间的影响,确定了水泥中矿渣的最佳掺量.  相似文献   

12.
研究了用矿渣细粉制备的调粒水泥的性能。结果表明,矿渣细粉对水泥标准稠度需水量基本没有影响,但延长了水泥的凝结时间。水泥28d抗压强度随矿渣细粉掺入量增加而逐渐提高,当掺量为50%时,抗压强度为最高。借助于DTA,XRD与SEM分析,可知矿渣经过超细粉磨后,水化速度加快,在水化28d内对水泥有增强作用。  相似文献   

13.
赤泥用作高性能水泥性能调节组分的研究   总被引:2,自引:0,他引:2  
采用化学活化和热活化的方法,对赤泥进行预处理后再与硅酸盐水泥熟料配合,在实验室条件下就不同化学试剂处理、不同温度下加热处理和不同掺量的赤泥一硅酸盐水泥熟料体系的胶凝性能进行了系统的试验研究。结果表明,未经任何处理的赤泥掺入水泥后,尤其是赤泥掺量大于20%时,水泥砂浆后期强度显著降低,而经特定化学试剂处理和一定温度煅烧处理后的赤泥掺入水泥熟料后,水泥砂浆的后期强度降低幅度得到明显减缓。  相似文献   

14.
脱硫石膏在矿渣水泥中的资源化利用   总被引:8,自引:0,他引:8  
通过研究烟气脱硫石膏在矿渣水泥中的处置利用方式,确定其在水泥生产中应用的可行性.结果表明,一定条件下进行热处理后的脱硫石膏掺入矿渣水泥后,在一定程度上可改善水泥的物理性能,提高水泥的强度,并可有效调节水泥的凝结时间;不同的热处理条件和脱硫石膏在矿渣水泥中的掺量对水泥性能有不同的影响.  相似文献   

15.
不同粉磨工艺水泥的颗粒、矿物组成分布及性能   总被引:2,自引:0,他引:2  
研究了采用不同粉磨工艺制备的水泥的颗粒分布及矿物组成分布对水泥与混凝土物理性能的影响.研究结果表明:水泥颗粒分布与粉磨设备条件及工艺参数密切相关,选用高效选粉机,增大循环负荷及控制适当的比表面积,可获得较窄的颗粒分布;由于C3S易磨性较好,易富集于水泥细颗粒中,通过提高水泥颗粒的集中程度及适当增大比表面积,可有效地把熟料中的C3S富集于30μm以下的水泥颗粒中;当水泥熟料质量、混合材质量、水泥比表面积控制水平较接近,水泥颗粒分布集中(主要集中在5~30μm范围)时,水泥的标准稠度需水量较大,凝结时间较长,1d强度较低,但3d,28d抗压强度较高,在混凝土中则表现为新拌混凝土泌水较严重,1d抗压强度偏低,3d.28d抗压强度增幅较大.  相似文献   

16.
为解决纯水泥浆注浆成本高、结石率低及凝结时间长等问题,对水泥-红黏土注浆材料进行研究。通过试验,分析水固比和红黏土掺量对浆液析水率、结石率、流动度、黏度及凝结时间的影响规律。结果表明,水固比一定时,浆液中红黏土掺量与析水率呈负相关,与结石率呈正相关;纯水泥浆液中掺入红黏土,流动度减弱,掺入红黏土可有效降低浆液凝结时间,浆液凝结时间与红黏土掺量呈负相关。浆液水固比为0.8,红黏土掺量为50%时,效果较优,初始黏度低,流动度接近纯水泥浆液,与传统水泥浆液相比,凝结固化时间低,析水率低,结石率达95%以上;通过现场工业试验,单孔每米注浆可节省水泥量约213 kg,大大减少水泥用量,降低注浆成本,检查孔检测注浆后透水率为3.52 Lu,防渗堵水效果较好,对地下水进行有效拦截,保证矿山安全可持续开采。  相似文献   

17.
粉煤灰砂浆早期抗压强度试验研究   总被引:2,自引:0,他引:2  
根据不同配合比研制的粉煤灰掺量13.6%的3组,粉煤灰掺量11.5%的3组,共6组M5粉煤灰砂浆.经过3天自然养护,对其进行了抗压强度试验,研究粉煤灰砂浆早期抗压强度的影响因素.试验研究表明:引气剂(微沫剂)掺入会降低粉煤灰砂浆的早期强度.减水剂的掺入可以提高粉煤灰砂浆的早期强度.减水剂掺量一定时,水胶比越小,粉煤灰水泥的早期抗压强度越高.从6组试件中选出28天抗压强度可达M5以上的粉煤灰砂浆,其配合比为:水泥:粉煤灰:轻砂:水:微沫剂:减水剂=1:0.7:4.4:2.0:0.00326:0.096.  相似文献   

18.
目的研究硅酸盐水泥-硫铝酸盐水泥复掺后的凝结时间及力学性能.方法分别测试不同硅酸盐水泥、矿物掺合料掺量下硅酸盐水泥-硫铝酸盐水泥复合体系的凝结时间及胶砂强度,并利用X射线衍射仪和扫描电子显微镜进行矿物组成和结构分析.结果硅酸盐水泥-硫铝酸盐水泥复合体系的凝结时间随硅酸盐水泥掺量的增大先减小再增大,随掺合料掺量的增大先减小再增大.硅酸盐水泥-硫铝酸盐水泥复合体系的强度随着硅酸盐水泥的增加先减小后增大,硅酸盐水泥掺量为10%时,3d抗压强度减小10.67%;随着掺合料的增大而降低,掺合料掺量为40%时,矿粉、粉煤灰3 d抗压强度分别减小44.5%和47.9%.结论两种水泥复掺会缩短凝结时间,降低强度,水化产物减少,结构疏松;粉煤灰和矿粉的掺入会延长凝结时间,减小强度,水化产物减少.  相似文献   

19.
本文研究了硅灰石掺量对白色硅酸盐水泥标准稠度、凝结时间、水化各龄期强度等的影响,结果表明:随着硅灰石掺量的增加,水泥标准稠度略有增加,初凝时间延长约1小时,终凝时间延长0.5至1小时,均在国标规定的凝结时间范围内,水化各龄期抗折、抗压强度均随掺量的增加而降低,抗折强度的下降幅度大大小于同龄期抗压强度的下降幅度;当掺量小于10%时,对白水泥的物理力学性能影响不大。  相似文献   

20.
为改善脱硫石膏的性能,使其在建筑工程中应用更为广泛。通过对不同水泥掺量的石膏进行抗压强度和抗折强度试验,探究石膏强度与水泥掺量的关系;并通过扫描电镜实验(SEM)和X射线衍射实验(XRD)对单掺水泥石膏强度变化的微观机制进行分析。研究结果表明:水泥掺入脱硫石膏后可以一定程度上改善脱硫石膏的力学性能,提高脱硫石膏的强度。通过微观机理分析发现,水泥-石膏混合体系中会产生钙矾石,由于钙矾石的膨胀以及硅酸钙水化后生成的水化硅酸钙凝胶填充于石膏孔隙,使石膏趋于密实,从微观上解释了石膏强度的增长机制。但由于钙矾石的膨胀具有双重作用,因此存在水泥的最经济掺加量,实验研究确定脱硫石膏中水泥的最经济掺加量为10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号