首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
界面反应层是影响SiC纤维(SiCf)增强钛基复合材料力学性能的重要因素,本文研究了SiCf/Ti2AlNb复合材料在热等静压成型以及热暴露过程中的界面反应、界面元素分布规律和界面热稳定性.研究结果表明:SiCf/Ti2AlNb复合材料内部元素扩散形成的界面产物主要为TiC,在热暴露过程中出现了TiSi2和NbSi2相.SiCf/Ti2AlNb复合材料界面反应层的厚度长大符合Arrhenius定律,其界面反应层厚度长大速率随着热暴露温度的升高而增加.界面反应层长大激活能为24.27kJ/mol,界面层长大频率因子为2.80×10-4 m/s1/2.SiCf/Ti2AlNb复合材料界面在700℃及以下温度具备良好的热稳定性.  相似文献   

2.
基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化   总被引:1,自引:0,他引:1  
采用化学气相渗透工艺制备平纹SiC/SiC复合材料,利用X射线CT无损检测技术研究纺织陶瓷基复合材料拉伸损伤演化与失效机理.制备了第3代SiC纤维增韧平纹叠层SiC/SiC狗骨状试件.研制了CT原位拉伸测试仪,完成了纳米X射线CT原位拉伸试验,对CT扫描三维重建图像和扫描电镜照片进行了分析.结果表明:纳米X射线CT原位试验能够揭示材料拉伸损伤演化过程.平纹SiC/SiC复合材料单轴拉伸应力-应变曲线呈现明显的非线性特征,损伤萌生于非线性变化阶段.首先,出现基体横向开裂,并随着拉力的增加逐渐扩展.其次,出现层间基体开裂和纤维束基体纵向开裂,并逐渐扩展至纤维束宽度.最后,拉伸方向纤维断裂,材料失效,大多基体横向裂纹闭合,但纵向纤维束与束间基体分离严重,断口参差不齐,有明显的纤维拔出现象.  相似文献   

3.
采用V型缺口试样对喷射沉积Al-20Si/SiCp复合材料进行了热循环试验,用光学金相显微镜和扫描电镜研究了在热应力作用下的热疲劳裂纹扩展方式和形态.结果表明:热疲劳裂纹优先在V型缺口处萌生;复合材料经一定的热循环次数后随相对密度的提高,裂纹扩展速率下降;在复合材料的三大相——α-Al基体、Si相以及SiC颗粒中,α-Al基体阻碍热疲劳裂纹的扩展,裂纹非连续性扩展;裂纹扩展方式受Si相的尺寸和分布状态控制,裂纹绕过Si颗粒向前扩展以及裂纹穿过Si颗粒向前扩展是裂纹碰到Si颗粒时常出现的两种机制;SiC颗粒与热疲劳裂纹有强烈的交互作用,加强SiC颗粒与基体的界面结合有利于提高热疲劳寿命.  相似文献   

4.
采用应力比为0.1,频率为20 Hz的正弦波于1300 ℃条件下对3D-C/SiC复合材料进行200 Mpa和80 Mpa的疲劳实验,在循环106次后在室温对其进行拉伸实验,并通过SEM观察其断口形貌,用光学显微镜观察基体裂纹密度.结果表明,经过200MPa疲劳处理的3D-C/SiC试样的比例极限、抗拉强度和断裂应变值与预疲劳前原始试样相比,分别提高110%,17%和29%,弹性模量比原始试样下降49%,基体裂纹密度和纤维的拔出长度等均明显增加;当最大疲劳应力低于基体开裂应力时,预疲劳处理对3D-C/SiC的拉伸性能几乎没有影响.  相似文献   

5.
空气环境对高温合金在高温下的损伤行为有显著影响.为了研究标准热处理态GH4169合金在高温疲劳裂纹扩展过程中的微观损伤机制,在空气环境中进行650℃、初始应力强度因子幅ΔK=30MPa·m1/2和应力比R=0.05的低周疲劳裂纹扩展试验.使用扫描电镜(SEM)及能谱(EDS)对试样的断口、外表面和剖面进行观察和分析.实验结果表明:疲劳主裂纹以沿晶方式萌生并扩展,随后沿晶二次裂纹出现,并且其数量和长度沿主裂纹方向逐渐增加,进入快速扩展阶段后,断口呈现韧窝组织形貌;在裂纹扩展过程中,δ相与基体的界面发生氧化,使得沿晶二次裂纹沿界面扩展并产生偏折,从而起到阻碍二次裂纹扩展的作用;试样外表面的主裂纹周围出现晶界氧化损伤区,其尺寸和晶界开裂程度沿主裂纹扩展方向逐渐增大.  相似文献   

6.
以BaAl2Si2O8(BAS)为烧结助剂,采用热压烧结工艺制备出致密的SiC基复合材料.实验结果显示,BAS是一种很有效的液相烧结助剂,促进了SiC基复合材料的致密烧结和SiC颗粒的长大.随着BAS含量的增加,复合材料的致密度,抗弯强度和断裂韧性都增大.40wt%BAS/SiC复合材料的室温抗弯强度和断裂韧性分别达到510MPa和7.0 MPa.m1/2.复合材料的主要韧化机制是裂纹的偏转、SiC颗粒的拔出和桥连.冷却过程中BAS的完全晶化有利于复合材料的高温力学性能.经测试,40wt%BAS/SiC复合材料在1 200℃仍保持很高的抗弯强度.  相似文献   

7.
采用挤压铸造法制备了Al2O3p/40Cr表层复合材料,研究了复合材料在热震过程中裂纹萌生和扩展的机理。复合层厚度为5mm,Al2O3颗粒体积分数为56%;热震试验采用650℃保温5min、20℃水冷,反复循环。结果表明,在弱机械结合情况下,由于空气中的氧气和铁生成的氧化物与基体在热膨胀系数和弹性性能上不匹配,裂纹首先在氧化层中萌生,随着氧化层厚度增加,会加速裂纹的生长;从各个方向生长的裂纹相遇时会搭接在一起,形成比较大的宏观裂纹。此机理与WC等其他颗粒增强复合材料的热震失效机理有着显著差异。热震15次后,试验材料在复合层和基材的宏观界面出现大裂纹。  相似文献   

8.
复合材料损伤与断裂力学研究   总被引:2,自引:0,他引:2  
对纤维增强聚合物基复合材料进行了损伤与断裂力学分析,建立了材料的模型,采用基体横向裂纹的剪切迟滞分析获得较好的基体开裂的定量分析结果;采用边界配置法计算各向异性材料裂纹体的应力强度因子,建立裂纹的扩展判据,并对纤维断裂进行了弹性分析.针对玻璃纤维/酚醛复合材料层板进行了理论和实验分析,得到材质裂纹密度与刚度退化的相关曲线,实验结果验证了理论分析结果的正确性;得到应力强度因子S随裂纹尺度的变化曲线和对纤维断裂和脱胶引起的刚度退化的计算结果.  相似文献   

9.
利用扫描电子显微镜(SEM)对不同纤维方位角的玻纤增强树脂复合材料(GFRP)在单拉载荷下的破坏过程进行了实时观测.在桥联模型基础上,将纤维剪应力和基体正应力定义为界面的应力状态,对概化的GFRP材料单元进行了定量分析,得到了单拉载荷下纤维体积分数为27.5%的单元起裂时的应力状态,并通过最大应力强度准则确定了导致起裂的应力分量.综合SEM图片中裂纹形态和断口形貌,分析了不同纤维方位角的GFRP材料裂纹萌生和裂纹扩展的机理.分析结果表明,随着纤维方位角增大,导致GFRP材料裂纹萌生的应力分量由基体最大主应力演化为界面剪应力;裂纹扩展路径由最大主应力控制的基体开裂演化为最大剪应力控制的界面开裂.  相似文献   

10.
利用SEM断口形貌分析了现役航空刹车用C/C复合材料的结构和界面结合状况,探讨了其断裂机理,分析了化学气相沉积炭的沉积机理.结果表明:C/C复合材料的断裂以"弱界面断裂"为主.裂纹优先在基体炭、炭布层间或长纤维束和短纤维间的弱界面等薄弱环节处产生.当裂纹尖端扩展到基体炭中的微裂纹处时,裂纹扩展转向;当裂纹扩展到纤维时,取道纤维与基体炭间弱界面层向前扩展,纤维经历与基体炭脱粘、弯曲、拔出、断裂等过程,导致整个材料断裂.航空刹车用C/C复合材料中的CVD炭以粗糙层状结构为主,CVD过程包括碳氢气体热解、成核、炭化、沉积生长等过程,其中,成核以物理成核为主.图2,表1,参16.  相似文献   

11.
Al_2O_3/SiC纳米陶瓷复合材料的制备及力学性能   总被引:9,自引:0,他引:9  
采用一次粒径分别为10nm和15nm的αAl2O3和SiC粉体为原料,制备了Al2O3/SiC纳米陶瓷复合材料·纳米SiC颗粒明显抑制Al2O3基体晶粒的长大,SiC体积分数超过4%时,材料的断裂方式由沿晶断裂变为穿晶断裂·随SiC含量的增加,Al2O3/SiC纳米复合材料的硬度增大·材料的弯曲强度和断裂韧性在SiC体积分数为5%时达到最大值·最大三点弯曲强度和断裂韧性分别为641MPa和47MPam1/2,明显高于热压单相Al2O3陶瓷(344MPa和31MPam1/2)·复合材料的强化主要来源于内晶颗粒残余应力强化和晶粒细化...  相似文献   

12.
采用两步包埋法在碳/碳复合材料表面制备了SiC/Cr-Al-Si涂层.采用XRD、SEM和EDS分析了涂层的物相组成、微观结构及断面元素分布,测试了双涂层碳/碳复合材料试样在1 500℃静态空气中的抗氧化性能.结果表明:SiC/Cr-Al-Si涂层主要由SiC、AlCr2Si及Al4Si2C三相组成,厚度约为120μm,无穿透性裂纹;与一步包埋法所得SiC涂层相比,SiC/Cr-Al-Si涂层碳/碳复合材料试样的抗氧化性能有所提高,该涂层试样氧化12 h后的失重不超过5%.两步包埋法所得SiC/Cr-Al-Si涂层表面存在微裂纹,并且包埋过程易于使Cr-Al-Si合金成分扩散到SiC涂层内部,从而无法形成内SiC涂层、外Cr-Al-Si涂层的双层涂层结构,降低了Cr-Al-Si合金涂层对C/C复合材料基体的高温氧化保护效果.  相似文献   

13.
循环压制对喷射沉积7075/SiCp致密化的影响   总被引:1,自引:0,他引:1  
采用循环压制工艺对多层喷射沉积大尺寸7075/SiCp复合材料(高度H>140mm)进行了致密化加工.研究了循环压制工艺对复合材料沉积坯和挤压坯密度及显微组织的影响规律,测试了复合材料的力学性能.结果表明,循环压制过程中在大的静水压力和剪切应力的共同作用下,复合材料中大部分孔洞逐渐被拉长闭合,致密化效果良好.沉积坯多次循环压制后,SiC颗粒取向平行于基体金属流动方向.挤压坯二道次压制后SiC颗粒破碎明显,分布得到改善,强度可以达到600 MPa以上.  相似文献   

14.
通过单向拉伸试验,对比研究平纹叠层SiC/SiC复合材料在室温和高温(1 200℃)环境下的宏观力学特性,并采用扫描电镜对试验件断口进行观测,以分析其微观损伤模式和破坏机理.结果表明:平纹叠层SiC/SiC复合材料的室温和高温拉伸应力-应变行为均表现为非线性特征,具有较高的轴向拉伸基体开裂应力;两者拉伸强度相差不大,但高温下的断裂应变比室温下的高.从宏观断口分析可知,两者均呈现韧性断裂,但纤维拔出长度和断口平齐程度有所不同.材料内部产生的基体裂纹大部分与加载方向垂直;断面上经向纤维束发生纵向拉伸断裂破坏,内部存在严重的界面脱粘损伤以及纬向纤维束发生轴向劈裂破坏是材料在室温和高温下的拉伸破坏机理.高温下由于纤维与基体间的界面层在一定程度上被高温氧化而退化失效,使界面结合变弱和界面滑移力降低,从而产生较长的纤维拔出长度,所以高温下材料具有较高的断裂韧性.  相似文献   

15.
薄膜-基体复合材料在许多工程领域得到广泛应用。但在生产与使用过程中膜基界面处容易产生裂纹,裂纹的扩展导致膜层的脱落是使膜层完全失效的主要形式之一。目前主要用划痕法定量地测量膜基的结合力。先参考划痕法的试验过程建立分析薄膜力学响应的模型。然后在FEPG(有限元自动生成系统)平台上,编制相应的计算程序。并计算分析了裂纹在不同基底TiN薄膜中的影响和裂纹位置不同对TiN/Au/HSS双层膜的影响,以及裂纹长短不同对TiN/HSS单层膜的影响,表明薄膜应力与裂纹的存在因素有关。  相似文献   

16.
为了缓解C/C复合材料脆性,利用勃姆石溶胶对单向碳纤维预制体进行处理,在纤维表面制备了Al2O3涂层.使用自制的热梯度化学气相沉积(TG-CVI)设备对预制体进行致密化,得到致密的C/C复合材料.通过高温热处理进一步调节界面的结合强度和基体碳的石墨化程度.利用排水法测试复合材料的密度,万能材料试验机测试其拉伸性能,采用可视化石墨烯片层技术(VGT)对试样进行处理,使用偏光显微镜(PLM)、扫描电子显微镜(SEM)、X-射线衍射(XRD)分别研究复合材料的微观组织、界面和断面形貌、以及物相组成.结果表明:涂覆Al2O3涂层的C/C复合材料在沉积后期转变为粗糙层(RL)织构.经过高温热处理后,碳基体的石墨化程度提高,改变了C/C复合材料的断裂机制.由复合材料最初的脆性断裂向拟延性转变,延伸率提高.C(f(Al2O3))/C-3样品的峰值应力达到了77.3 MPa,延伸率达到了15%.  相似文献   

17.
采用室温拉伸测试、扫描电镜及透射电镜等手段研究了往复镦挤变形工艺对SiCp/2024铝基复合材料显微组织和力学性能的影响.结果表明,SiCp/2024铝基复合材料经过往复墩挤后,基体组织出现细化,SiC颗粒发生破碎,基体中SiC颗粒由团聚变得分布均匀;在交替剪切变形作用下,基体中的位错发生重组和湮灭,形成细小的亚晶;相对于挤压态,经过4道次变形后,复合材料抗拉强度由271 MPa提高到378 MPa,屈服强度由203MPa提高到260 MPa;经过往复镦挤变形后,拉伸断口以界面脱粘和颗粒断裂方式为主.  相似文献   

18.
采用放电等离子烧结(SPS)技术,制备了质量分数为10%的TiC/TiAl复合材料,从微观结构上研究了TiC颗粒对TiAl基体材料力学性能的影响。实验结果表明:在TiC,TiAl复合材料中TiC颗粒主要分布于晶界,少量进入基体晶粒的内部,形成晶内型结构;TiC颗粒的引入细化基体晶粒的尺寸,有效地阻碍材料内部裂纹扩展,引起裂纹偏转,增加其扩展路径,改善材料的韧性,同时在晶界和晶内形成了一系列位错。位错强化与细晶强化是主要的强化机制,TiC/TiAl复合材料韧性的提高主要源于TiC粒子对裂纹的偏转。  相似文献   

19.
双态组织γ-TiAl基合金的室温拉伸断裂机理的研究   总被引:1,自引:5,他引:1  
通过对双态组织的扫描电镜原位拉伸实验、相应的断裂表面观察以及有限元计算,研究了TiAl基合金双态组织拉伸的断裂机理.研究表明,许多裂纹在塑性变形前沿着层间起裂和扩展,断裂发展的驱动力是拉应力.在直缺口试样中,许多裂纹直接起裂于缺口根部,而且起裂于γ晶粒,并沿着层间扩展.随着拉应力的增加,主裂纹和新裂纹也可以通过障碍晶粒的穿层解理断裂来连接.然而在V型缺口试样中,裂纹则起裂于距缺口根部一定距离处.通过有限元计算得到沿层断裂强度大约为110MPa,穿层断裂强度大约为250MPa,这就是裂纹更容易沿着层间形核及扩展的原因.  相似文献   

20.
利用常规静态单向拉伸技术,研究了SiC颗粒尺寸对用粉末冶金工艺制得的SiC颗粒增强2124Al合金(SiCp/2124Al)变形行为和力学性能的影响.在体积比为20%的条件下,SiC颗粒尺寸在0.2~48μm的范围内变化,无论室温还是300℃,材料的变形行为和拉伸力学性能明显取决于SiC颗粒尺寸.研究表明,材料中的空隙密度、SiC颗粒的间距、分布状态以及SiC颗粒的断裂、SiC颗粒/Al界面的脱粘和基体材料的开裂等几种因素共同影响着复合材料的变形行为和力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号