共查询到20条相似文献,搜索用时 15 毫秒
1.
频繁项目集发现算法Apriori的研究 总被引:3,自引:0,他引:3
为了提高Apriori算法的效率,从减少数据库扫描次数的角度出发,提出了一种动态自适应的改进算法.通过比较,该改进算法有效地减少了数据库的扫描次数,明显地提高了Apriori算法的效率,当数据库中总项目数目较大时,该算法更为有效. 相似文献
2.
张小林 《长春师范学院学报》2013,32(3)
本文分析了关联规则的经典算法Apriori算法,对该算法存在的不足进行了讨论,针对这些不足介绍了一些主要的算法改进方法和思路,并提出了一种基于矩阵的Apriori改进算法,通过减少对数据库的操作来提高效率. 相似文献
3.
在数据挖掘中,关联规则是发现知识的一种有效方法。该文在分析关联规则挖掘Apriori算法原理和性能的基础上,并提出了一种效率更高的改进算法。该算法是基于散列和事务压缩这两种技术。散列技术可以显著地压缩要考察的候选项集,事务压缩可以减少数据库中的事务项,从而提高Apriori算法效率。 相似文献
4.
张小林 《长春师范学院学报》2013,(6):17-21
本文分析了关联规则的经典算法Apriori算法,对该算法存在的不足进行了讨论,针对这些不足介绍了一些主要的算法改进方法和思路,并提出了一种基于矩阵的Apriori改进算法,通过减少对数据库的操作来提高效率。 相似文献
5.
关联规则挖掘Apriori算法的改进及其应用研究 总被引:1,自引:0,他引:1
丁卫平 《南通大学学报(自然科学版)》2008,7(1):50-53
在分析经典关联规则挖掘算法的基础上.提出了一种改进的Aprioff关联规则算法.并进行该算法的UCI机嚣学习数据库性能分析和设计电子病历关联规则挖掘应用系统.结果表明该算法在运行速度和挖掘性能上都是高效的. 相似文献
6.
关联规则Apriori改进算法 总被引:1,自引:0,他引:1
在分析关联规则和Apriori算法原理的基础上,针对Apriori算法瓶颈提出一种改进算法,该算法直接产生项数最大频繁项目集.改进算法访问的数据量明显减少,尤其适用于只寻找项数最大的频繁项目集的情况,尤其适用于稀疏数据.实验结果表明改进算法提高了算法效率,改善了算法的性能. 相似文献
7.
在Apriori算法的改进算法M-Apriori基础上,为了进一步减少不必要的数据库扫描,引入事务约简技术,提出一种改进的MR-Apriori算法.考虑到M-Apriori算法会产生大量候选项集,为了实现对候选项集快速剪枝,加入一个自定义的2项集支持度矩阵,提出第2种改进的MP-Apriori算法.将事务约简和2项集矩阵快速剪枝一起引入到 M-Apriori算法中,提出第3种改进的MRP-Apriori算法.最后,在mushroom数据集上进行实验.结果表明:加入事务约简的MR-Apriori算法和加入2项集矩阵快速剪枝的MP-Apriori算法,运行时间相比原M-Apriori算法都有较大缩减,而同时结合两种优化策略的MRP-Apriori算法运行时间最短,验证了这两种优化策略的有效性. 相似文献
8.
关联规则Apriori算法的改进 总被引:7,自引:0,他引:7
杨晓平 《浙江海洋学院学报(自然科学版)》2006,25(2):176-182,195
Apriori算法是关联规则提取的经典算法,但存在一些不足之处。关联算法的研究主要集中在提高Apriori算法的效率上。本文分析了该算法并进行了改进,使得频繁集产生的同时精简事务集。这种算法及时去掉了不必要的数据,减少了数据运算,从而使算法更优化。 相似文献
9.
基于模式矩阵的FP-growth改进算法 总被引:10,自引:0,他引:10
数据挖掘中关联挖掘算法比较典型的有Apriori和FP—growth算法.实验和研究证明FP—growth算法优于Apriori算法.但是针对大型数据库这两种算法都存在着较大缺陷,不仅要两次或多次扫描数据库,而且很难处理支持度和数据变化等关联规则更新问题.作者提出了基于模式矩阵的FP—growth改进算法,它至多扫描数据库一次,特别在更新问题上不用重新扫描数据库.通过实验结果分析,验证了这种改进算法相对于原有FP—growth算法的优势,特别在大数据集下,大大降低了挖掘的时间复杂度. 相似文献
10.
钟晓桢 《江汉大学学报(自然科学版)》2007,35(3):59-63
在数据库中挖掘关联规则是数据挖掘领域的一个重要的研究课题,在应用中具有非常重要的意义.在分析Apriori算法和IUA算法经典关联规则挖掘算法的基础上,提出了一种基于最近挖掘结果的更新算法称为IIUA.IIUA算法吸收了Apriori算法和IUA算法的优点,在改变最小支持度和基于最近挖掘结果的条件下,从生成尽可能少的候选项集考虑,得到完整的新频繁项集,从而提高算法的效率. 相似文献
11.
裘慧奇 《上海理工大学学报》2022,44(1):56-61
针对传统的关联分析算法Apriori执行效率低、I/O过重、计算量过大等问题,提出了一种通过减少扫描数据库次数来降低候选项集计算复杂度, 在频繁项集求解过程中通过将事务项集转换为行向量,利用“与”操作来提高算法执行效率的Apriori改进算法。利用学生在校行为数据集对Apriori改进算法进行有效性和高效性验证。同时,为了符合算法对样本数据的要求,在样本数据处理过程中对原始数据进行了清洗和离散化处理,定义了分析对象的样本数据离散化处理的规则。通过实验分析比较了Apriori改进算法与经典Apriori算法的性能。结果表明,Apriori改进算法保持了对实际分析对象关联规则挖掘的有效性,同时具有更高的执行效率。 相似文献
12.
唐冰 《西南民族学院学报(自然科学版)》2013,39(3)
提出一种基于粗糙集理论和布尔矩阵的关联规则挖掘算法,作为对Apriori算法的改进,通过构造布尔矩阵,利用粗糙集划分等价类的方法对事务数据库的记录进行分类,然后通过等价类的取交或取并运算产生更高阶的频繁项目集,算法能有效减少数据库的扫描次数,实验表明算法在对事务数据库进行挖掘时显示出良好的性能. 相似文献
13.
Apriori算法在消费市场价格分析中的研究与应用 总被引:1,自引:0,他引:1
在介绍关联规则基本原理的基础上,对Apriori算法进行了详细的分析和研究,并将Apriori算法应用于消费市场价格数据中,挖掘出了各种农副产品价格之间的关联关系,即从大量的农副产品价格数据中挖掘出了大米、玉米、大麦和羊肉、牛肉价格之间的关联规律. 相似文献
14.
改进购物篮分析的关联规则挖掘算法 总被引:5,自引:1,他引:5
基于改进传统购物篮分析的关联规则挖掘是在数据处理时引入兴趣度加权的思想,将所有交易中同一类商品的交易量进行归一化处理,根据用户领域知识的要求,计算该类商品的兴趣度加权阈值,从而改进传统的购物篮分析,使所挖掘出的关联规则符合实际,同时减少关联规则挖掘的工作量,提高规则挖掘的效率和准确性. 相似文献
15.
挖掘关联规则Apriori算法的一种改进 总被引:1,自引:0,他引:1
本研究在对Apriori算法分析的基础上,提出了改进的Apriori算法。改进后的算法采用矩阵表示数据库,减少了扫描事物数据库的次数;利用向量运算来实现频繁项集的计数,同时及时地去掉不必要的数据,减少了数据运算,从而提高了算法的运行效率。 相似文献
16.
在所有频繁项集挖掘算法中,Apriori算法一直是一个经典的算法,但是该算法存在的最大缺陷是要进行多次的数据库扫描并且在挖掘过程中产生大量的候选频繁项集,因此效率很低.提出了利用基于矩阵的方法挖掘频繁项集,很好地避免了这个缺陷. 相似文献
17.
利用项集有序特性改进Apriori算法 总被引:4,自引:2,他引:4
Apriori算法是挖掘关联规则的一个经典算法,通过分析、研究该算法的基本思想,并利用项集的有序特性对其进行改进,减少了生成的候选集数量,从而提高算法的效率. 相似文献
18.
针对Apriori算法存在多次扫描数据库及产生大量候选项集的缺陷,提出了一种改进算法.该算法只需扫描数据库一次,并将事务变换成二进制存储到数据库,可节省存储空间、提高速度.实验结果表明,改进算法挖掘关联规则的效率有较大提高. 相似文献
19.
Apriori算法是关联规则挖掘中最经典的算法,但它存在两大致命缺陷:需多次扫描数据库和产生海量的候选项目集。从这两个角度出发改进算法,提出了一种基于模式矩阵的高效改进算法(简称P-Matrix算法),使扫描数据库的次数减少为一次,同时不产生候选项目集而直接产生频繁项目集,从而使算法的时间复杂度和空间复杂度大大减少,有效地提高了Apriori算法的效率。 相似文献
20.
关联规则是数据挖掘的一个重要研究内容,主要用于从大量数据集中挖掘出有价值的数据项之间的关联关系.典型案例是超市的购物篮分析,主要对顾客的购买记录数据库进行关联规则挖掘,可以发现顾客的购买行为.本文依据Apriori算法的两个基本性质,即任何大项集的子集一定是大项集,非大项集的超集一定是非大项集,对经典的Apriori算法要多次扫面事务数据库的问题,作了一些改进,并进行仿真计算,结果表明,改进的算法确实减少了扫描次数. 相似文献