共查询到16条相似文献,搜索用时 93 毫秒
1.
基于小波包和EMD处理的滚动轴承故障诊断 总被引:2,自引:0,他引:2
为解决异步电机故障轴承振动信号易受噪音影响信噪比较小的缺点,提出了一种新的故障诊断方法。首先,采用小波分析方法对测得的原始信号进行去噪,并根据频率对原始信号进行频带划分;其次,用经验模式分解(EMD)方法对小波包分解重构得到的低频段信号进行分解,获得若干固有内在模函数(IMF);最后,采用傅里叶变换对各个IMF函数进行时频分析获得频谱图,进而提取故障频率,根据故障频率和故障类型的对应关系得出最后的诊断结果。实验表明,该方法能有效地提取出故障特征频率,方便地判断出故障类型。对比分析了傅里叶变换和小波变换与本方法的优缺点,为滚动轴承的早期故障诊断提供了一个新的思路。 相似文献
2.
提出了一种基于小波包分析的滚动轴承故障诊断方法用于实现滚动轴承早期故障的检测.该方法的诊断过程如下:对轴承原始振动信号进行频谱分析,获取振动信号能量集中的频段.根据频段的范围和振动信号的采样频率确定小波包分解的层数.采用小波包分解的方法提取滚动轴承振动信号中能量集中的频段并生成相应的重构信号,对重构后的振动信号进行Hilbert变换和二次频谱分析.通过对比轴承故障的特征频率和二次频谱中的特征谱线判断轴承是否有故障及其发生位置.运用上述方法对具有外环故障的滚动轴承进行了实验研究并成功地实现了滚动轴承外环故障的检测.实验结果表明基于小波包分析的诊断方法可以有效诊断出滚动轴承的早期故障. 相似文献
3.
基于小波包-Elman神经网络的电机轴承故障诊断 总被引:1,自引:0,他引:1
根据电机滚动轴承振动信号的频域变化特征,通过小波包分析将轴承振动信号分解在不同的频带之内,以频带能量作为识别故障的特征向量,应用容错性强、动态性能良好的Elman神经网络建立从特征向量到故障模式之间的映射,实现电机轴承故障分类。仿真结果表明,采用小波包和Elman神经网络相结合的方法能更加有效地实现电机轴承的故障诊断。 相似文献
4.
根据电机滚动轴承振动信号的频域变化特征,通过小波包分析将轴承振动信号分解在不同的频带之内,以频带能量作为识别故障的特征向量,应用容错性强、动态性能良好的Elman神经网络建立从特征向量到故障模式之间的映射,实现电机轴承故障分类。仿真结果表明,采用小波包和Elman神经网络相结合的方法能更加有效地实现电机轴承的故障诊断。 相似文献
5.
将小波降噪和经验模态分解相结合,提出一种风电机组齿轮箱故障诊断的方法。先对齿轮故障振动信号进行小波降噪预处理,再进行经验模态分解,对包含故障特征的固有模态函数用Hilbert变换得到包络谱,通过对包络信号做功率谱分析,提取故障特征频率,与未降噪信号处理的结果进行比较,降噪后诊断效果明显。 相似文献
6.
利用EMD方法和小波变换进行信号奇异性检测 总被引:4,自引:0,他引:4
本文采用经验模式分解(EMD)与小波变换相结合的方法分析非平稳机械故障信号的奇异性,进行机械故障诊断。与直接对原信号进行小波分析相比较,该方法提取的奇异性特征明显。数值模拟和对故障轴承的振动信号分析表明了该方法的有效性。 相似文献
7.
基于Hilbert变换和小波包能量分析的转子断条故障诊断 总被引:1,自引:0,他引:1
转子断条是笼型异步电机最常见故障之一.基于Hilbert变换和小波包频带能量分析方法,提出了一种新的笼型异步电机转子断条故障检测方法.对采集的定子电流信号进行Hilbert变换,消去定子电流中包含的直流分量,解决了转子断条故障特征分量容易被基波湮没、难以检测的问题.采用基于小波包频带能量分析方法,对转子断条故障进行识别.实验结果验证了方法的有效性. 相似文献
8.
基于EMD的复合故障诊断方法 总被引:2,自引:0,他引:2
针对转子不平衡故障和滚动轴承微弱损伤性故障的复合故障诊断问题,提出了一种基于经验模式分解的故障诊断方法,进行复合故障的耦合特征分离和轴承损伤性故障信号特征提取研究. 该方法首先通过经验模式分解将复合信号分解为若干个本征模函数(intrinsic mode function, IMF);然后通过计算各IMF与原始复合信号的相关系数确定包含故障特征信息的主要成分,除去虚假分量;最后针对主要成分中的低频成分进行频谱分析提出转子故障特征,针对主要成分中的高频成分进行Hilbert包络解调提取调制故障特征,即轴承损伤性故障特征. 仿真及实验结果表明该方法的有效性和实用性. 相似文献
9.
《河南科技大学学报(自然科学版)》2014,(5)
小波包分解可以提高信号频率分辨率,但子带信号会出现虚假频率成分,造成严重的频率混叠现象。运用小波包的改进算法和经验模态分解相结合,来检测诊断滚动轴承故障的特征。首先,应用快速傅里叶变换和快速傅里叶逆变换对小波包各子带信号进行处理,并调整滤波器组使子带频带顺序排列。提取含故障频率的子带信号对其进行经验模态分解,以互相关、峭度准则提取故障本征模函数分量,可以避免本征模函数分量选择的盲目性。对仿真信号分析和实例分析的结果表明:该方法能够准确地检测出轴承故障,从而突出该方法的有效性。 相似文献
10.
基于小波包-AR谱技术提取柴油发动机曲轴轴承故障特征 总被引:6,自引:0,他引:6
利用小波包分解柴油发动机曲轴轴承振动信号,对不同频段的分解系数进行了时域重构,分别对重构的时间序列进行AR(autoregressive)谱分析,实现了对分析对象的故障特征提取.分析结果表明:小波包-AR谱技术能分离多激励源的干扰,有效地提取柴油发动机曲轴轴承故障特征信号;曲轴轴承特征归一化频段为0~0.25,在发动机转速高于1 800 r/min时更明显;传感器最佳位置是在曲轴轴承正对的发动机两侧或油底壳处. 相似文献
11.
基于小波包和支持向量机的传感器故障诊断方法 总被引:2,自引:0,他引:2
针对自确认压力传感器的故障诊断问题,提出了一种基于小波包变换和支持向量机的传感器故障诊断方法。该方法对传感器输出信号进行三层小波包分解,提取各个节点的小波包系数,对每个节点的小波包系数通过一定的削减算法增强故障特征,然后利用重构的时域信号计算各个节点的能量以及整个信号的削减比作为特征向量,以此作为输入来建立支持向量多分类机,判断传感器的故障类型。对自确认压力传感器、温度和流量传感器的故障诊断结果表明,该方法能有效地应用于传感器的故障诊断中。 相似文献
12.
13.
大功率整流装置故障诊断系统研究 总被引:1,自引:0,他引:1
针对电化学、冶金行业广泛使用的同相逆并联整流装置,分析了整流系统的故障类型以及故障诊断特殊性,通过实验,研究了基于整流变压器阀侧相电流的故障诊断方法,提出了小波包-模糊推理实现故障诊断.该方法通过实验,验证了其故障诊断的准确性. 相似文献
14.
针对传统故障诊断模型面向海量故障数据时诊断准确度低的问题,首先,提出了一种局部均值分解与固定点算法联合降噪方法,以消除轴承振动信号中的噪声;其次,为了避免原始信号中敏感特征难以提取的问题,提出了一种基于核主成分分析的降维方法;再次,构建了一种基于改进极端梯度提升决策树的故障诊断模型,采用GS-PSO算法优化SVM性能,进而运用改进极端梯度提升决策树思想修正分类模型的残差以提升模型分类精度,应用Spark-大数据平台,通过并行处理技术进行科学计算;最后,采用CWRU提供的滚动轴承数据进行训练与仿真,证明构建的模型能实现对不同类型滚动轴承的识别诊断,并保证诊断结果的准确率。通过对4种不同故障诊断模型的对比分析,表明本文模型具有可行性和优越性。 相似文献
15.
为提升轴承故障特征提取精度和运行状态评估准确性,提出一种基于小波包散布熵与Meanshift概率密度估计的诊断方法.首先,采用小波包变换对轴承振动信号数据进行升维,通过计算每个子带的散布熵构建特征矩阵;然后,利用PCA对多维矩阵进行可视化降维,采用Meanshift无参估计得到训练样本的概率密度最大位置作为聚类中心;最后,通过计算测试样本散布熵坐标与各聚类中心的欧式距离判定测试样本类别归属.采用CWRU和QPZZ-II轴承实验台不同故障类型和故障程度样本数据对所提方法进行验证,结果表明,得益于小波包完备的理论模型和信号频带分解稀疏性,结合散布熵指标对数据样本良好的鲁棒性,所构造的特征矩阵具有较好的类内聚集性和较大的类间距离,同时,Meanshift以概率密度最大化为目标自适应迭代聚类中心和隶属度,可以有效实现对不同数据样本的分类识别. 相似文献
16.
针对模拟电路故障变化的复杂性,提出一种小波包分析和相关向量机的电路故障诊断模型,首先采集模拟电路不同故障状态下的输出信号,将输出信号进行小波包分解,提取分解信号的归一化能量特征,然后将特征向量输入相关向量机中进行训练,建立模拟电路故障诊断模型,实现不同的故障状态分类识别;最后通过仿真实例对模型性能进行测试.测试结果表明,相对于其他模拟电路故障诊断模型,该模型不但提高了模拟电路故障诊断的正确率,而且减少了故障诊断时间. 相似文献