共查询到16条相似文献,搜索用时 46 毫秒
1.
用凝胶-燃烧法合成锂离子正极材料 LiAl0.1Mn1.9O4,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、循环伏安法(CV)和充放电测试对样品进行了表征.结果表明,凝胶-燃烧法在800 ℃烧结12 h合成掺铝后的LiAl0.1Mn1.9O4样品形貌比没有掺铝的更规整,电化学的循环性能更好. 相似文献
2.
通过溶胶-凝胶法合成LiAl0.1Mn1.9O4,XRD的结果表明掺杂少量的铝后并没有改变晶体的结构。利用恒流充放电测试手段比较研究了尖晶石型的LiAl0.1Mn1.9O4,XRD铝的掺杂后的LiAl0.1Mn1.9O4,XRD比没有掺杂的LiMn2O4更好的可逆性能,更好的循环性能。 相似文献
3.
通过溶胶-凝胶法合成LiAl0.1Mn1.9O4,XRD的结果表明掺杂少量的铝后并没有改变晶体的结构。利用恒流充放电测试手段比较研究了尖晶石型的LiAl0.1Mn1.9O4,铝的掺杂后的LiAl0.1Mn1.9O4比没有掺杂的LiMn2O4更好的可逆性能,更好的循环性能。 相似文献
4.
以溶胶-凝胶法合成了阴阳离子复合掺杂尖晶石型锰酸锂正极材料LiCu0.05M0.95O3.9F0.1 ,XRD表征合成产物具有良好的尖晶石结构;SEM测试表明所合成产物的颗粒达到了亚微米级,且分布均匀,形貌较好。以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:LiCu0.05Mn1.95O3.9F0.1材料比LiMn2O4正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性。 相似文献
5.
选用金属醋酸盐和柠檬酸配体,采用溶胶-凝胶法合成出锂离子电池正极材料L i1.05M n2O4.通过优化溶液的pH值和合成温度,包括预烧温度和灼烧温度,制备出纳米尺寸颗粒占13.05%的样品.X射线衍射分析表明,样品为尖晶石型结构,晶格常数a=0.823 nm.扣式电池充放电性能测试的结果表明,合成的L i1.05M n2O4样品具有良好的充放电循环性能,0.1 C充放电循环100次容量损失仅为4.5%. 相似文献
6.
采用草酸铵共沉淀-高温固相烧结法合成了高电压尖晶石正极材料LiNi0.5Mn1.5O4及其掺杂改性材料LiNi0.4Mg0.1Mn1.5O4.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电测试等对所合成样品进行表征.XRD测试表明所合成的样品具有尖晶石结构,空间群为Fd3m.电化学测试表明,样品有两个主放电平台,分别为4.7V和4.1V.经过800℃煅烧的样品LiNi0.5Mn1.5O4具有最好的倍率性能.经过900℃煅烧的样品具有最好的循环性能,以0.1C充放电,最高放电比容量达到124.2mAh.g-1,循环30次后容量保持率达92.7%.Mg掺杂的改性样品LiNi0.4Mg0.1Mn1.5O4在0.1C倍率下循环30次后容量保持率达95.7%,Mg的掺杂可以提高该材料的循环性能. 相似文献
7.
文章采用固相法合成了电化学性能优异的碳包覆的锂离子电池负极材料Li3.9Mn0.1Ti5O12/C,并对材料进行了XRD、激光粒度分析、循环伏安测试及恒电流充放电测试。结果表明:Mn的掺杂未改变材料的晶体结构,由于Mn4+对Li4Ti5O12的晶胞内部的掺杂和C对其晶胞外部的包覆,使复合材料的电导率,大电流循环稳定性和可逆比容量都明显提高。在1C充放电循环时,Li3.9Mn0.1Ti5O12/C首次放电容量为162.4mAh/g,50次循环后,稳定在159.6mAh/g,容量保持率为98.3%;在2C充放电循环时,首次放电容量达到了153.5mAh/g,展示了优良的电化学特性。 相似文献
8.
以醋酸锂、醋酸锰和醋酸镍为原料,羟基乙二酸为螯合剂,通过溶胶-凝胶法制备层状LiMn0.5Ni0.5O2正极材料,得到的产物具有典型的α-NaFeO2层状结构,颗粒尺寸在300-400nm之间。对900℃下制得的层状LiMn05Ni0.5O2在2.5-4.3V之间进行充放电测试,电流密度为0.1mAcm^-2,其首次放电容量达到了161.2mAh g-^1。经过20次循环后,仍然保留了初始容量的88%。 相似文献
9.
采用蔗糖辅助燃烧法制备了富锂型锂离子电池正极材料Li1.1Mn2O4, XRD表明合成的Li1.1Mn2O4样品具有完整的尖晶石结构. SEM显示样品是由纳米粒子组成. 0.5 C 初始放电比容量为115 mAh/g, 10 C放电比容量可达109 mAh/g. 10 C倍率下循环200次容量保持率为90%. 实验结果表明该材料倍率和循环性能均优良. 相似文献
10.
通过对尖晶石LiMn2O4进行掺杂研究,发现LiMg0.02Zn0.05Mn1.93O4是一种很好的锂离子电池正极材料,LiMg0.02Zn0.05Mn1.93O4的大电流(50mA/g≈0.5C)比容量可达98mAh/g,在稳定衰减期,平均每循环周期衰减0.0057mAh/g,采用LiMg0.02Zn0.05Mn1.93O4作为锂离子电池的正极材料,可以使锂离子电池在价格和循环寿命上都得到很大的改变。 相似文献
11.
新型锂离子电池正极材料LiNi0.5Mn0.5O2纳米晶的制备与电化学性能 总被引:1,自引:0,他引:1
运用溶胶-凝胶法成功合成了层状锂离子电池正极材料LiNi0.5Mn0.5O2的纳米粒子,并利用XRD,TEM,SEM手段进行了表征,电化学测试性能满意.在电压范围为2.5-4.5 V和电流密度为0.1 mA·cm-2的条件下,该正极材料能释放出159.8 mA h·g-1/Li的容量. 相似文献
12.
介绍了溶胶凝胶法制备LiFePO4的几个不同的实例,分析了溶胶凝胶法的优缺点.采用溶胶凝胶法合成振实密度大的多孔材料,可以提高LiFePO4的高倍率充放电性能与改善电池的体积比能量,使用有机溶剂可缩短该方法合成周期. 相似文献
13.
LiMn2O4是一种含锂的尖晶石结构化合物,充放电反应过程中这种化合物能提供锂离子在正负极之间嵌入-脱出循环所需要的三维通道. 该文给出在LiMn2O4中添加一定量的过渡金属元素Ni来高压煅烧优化其性能. 所制备的LiMn1.5Ni0.5O4显现出较好的纯相尖晶石结构,电化学性能测试表明在10 C放电倍率下循环3 000周后仍保持初始容量的80%. 相似文献
14.
对经不同离子交换的聚苯乙烯阳离子交换树脂进行了高温炭化处理 ,制备成具有高度分散状态的金属炭复合材料。考察了将这些金属炭复合材料作为二次锂离子电池炭电极的电化学行为。实验结果表明 ,掺杂不同离子的炭电极具有充、放电的不可逆性 ,其充、放电容量也有明显的差别。采用聚苯乙烯阳离子交换树脂制备二次锂离子电池炭电极材料时 ,炭化处理的温度并不是越高越好。在一定温度范围内 ,低温处理样品的充、放电容量反而高于高温处理样品 相似文献
15.
对经不同离子交换的聚苯乙烯阳离子交换树脂进行了高温炭化处理,制备成具有高度分散状态的金属-炭复合材料。考察了将这些金属-炭复合材料作为二镒锂离子电池炭电极的电化学行为。实验结果表明,掺杂不同离子的炭电极具有充、放 电的不可逆性、其充、放电容量也有明显的差别。采用聚苯乙烯阳离子交换树脂制备二次锂离子电池炭电极材料时,炭化处理的温度并不是越高越好。在一定温度范围内,低温处理样品的充、放电容量反面高于高 相似文献
16.
研究了以Li4Ti5O12为负极,分别以LiCo0.5Ni0.5Mn0.5O2,LiMn2O4或LiFePO4为正极的锂电池体系. 先筛选不同厂家的正负极材料,然后再匹配成电池做循环性能研究. 测试表明,经筛选的LiCo0.5Ni0.5Mn0.5O2,LiMn2O4与LiFePO4三种材料分别与Li4Ti5O12组成电池的初始容量分别为963、931、960 mAh;500次充放电循环后容量保持率分别为96.56%、87.69%、98.1%. 其中LiCo0.5Ni0.5Mn0.5O2体系的初始容量最高,LiFePO4体系的循环性能最好. 3种不同正极材料的钛酸锂锂离子电池在85 ℃环境下搁置4 h,电池形变少于5%. 相似文献