共查询到18条相似文献,搜索用时 62 毫秒
1.
混沌时间序列的最小二乘支持向量机预测 总被引:4,自引:0,他引:4
提出了最小二乘支持向量机混沌时间序列预测方法,并研究了三种混沌信号的预测性能。该方法在优化指标中采用了平方项,且只有等式约束,将传统支持向量机求解二次规划问题转化为求解线性方程组,因而简化了计算复杂性。仿真实验结果表明该方法预测模型参数选择容易、在较大范围内取值时对预测误差影响很小,而且即使在输入维数m小于Takens嵌入定理所确定的维数时,也具有很好的预测性能。 相似文献
2.
通过计算机对人脸进行分析,从而确定身份的技术统称为人脸识别,其具体内容包括图像预处理、特征选择和提取、分类。首先介绍了支持向量机和最小二乘支持向量机的基本思想和数学模型,推导了最小二乘支持向量机的算法步骤,在对人脸图像进行预处理的基础上,采用奇异值分解扩展算法提取人脸特征,然后再采用上述算法对人脸图像进行分类。通过实验可知本文中的算法可以对人脸图像进行有效分类,对解决小样本分类问题是有效的、可行的。 相似文献
3.
最小二乘支持向量机在人脸识别中的应用 总被引:4,自引:0,他引:4
支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性,在介绍了典型支持向量机与最小二乘支持向量机(LS_SVM)原理的基础上,给出最小二乘支持向量机的算法实现过程,将其应用于人脸识别当中,取得较典型支持向量机在时间上较好的效果.在OPL人脸库中的实验结果表明,基于LS_SVM的人脸自动识别系统更能适用于实时性要求较高的场合. 相似文献
4.
针对永磁同步电机在一定情况下呈现混沌特性且混沌模型难以精确获得的情况,提出了一种基于多核对称最小二乘支持向量机的回归建模方法.在最小二乘支持向量机模型中增加对称性的约束条件,构成对称最小二乘支持向量机.将多核学习的方法与对称最小二乘支持向量机相结合,构造由多个基本核函数线性组合而成的新的等价核,用于建立永磁同步电机的混沌回归模型.仿真结果表明,与一般最小二乘支持向量机相比,该方法能够降低单个核函数的选择对建模精度的影响,提高混沌建模精度. 相似文献
5.
利用最小二乘方法和临近支持向量机(PSVM)算法,并结合双胞支持向量机(TSVR),提出了最小二乘双胞支持向量回归机(LSTSVR).作为对照,TSVR需要求解2个二次规划问题,而LSTSVR仅需求解2个线性方程组.最后利用不同的实例验证了所提算法的可行性和有效性. 相似文献
6.
柳茂 《内蒙古师范大学学报(自然科学版)》2015,(3):333-338
针对工程造价变化的时变性、混沌性,提出一种混沌理论和最小二乘支持向量机的工程造价预测模型.首先收集工程造价历史样本并进行相应的预处理,然后根据混沌理论确定最优延迟时间和嵌入维数,重建工程造价的训练集和测试集,最后用最小二乘支持向量机建立工程造价预测模型,并采用具体建筑工程造价数据进行仿真测试.结果表明,相对其他工程造价预测模型,该模型可以很好地反映工程造价的变化趋势,提高工程造价的预测准确性. 相似文献
7.
针对火灾信号特征参数的模糊特性,采用混沌量子遗传算法对模糊最小二乘支持向量机的参数进行优化,建立基于模糊最小二乘支持向量机的火灾信号辨识模型.研究结果表明:基于混沌量子遗传算法的模糊最小二乘支持向量机火灾辨识模型相对误差为1.1%,具有较高的辨识精度;火灾信号辨识性能指标即O2质量分数减少值权重γ1、H2质量分数权重γ2、烟气质量分数权重γ3、温度权重γ4和CO质量分数权重γ5满足:γ3>γ4>γ5>γ1>γ2. 相似文献
8.
9.
为了改善传统方法设计滤波器的幅频响应性能,提出了基于最小二乘支持向量机的滤波器设计方法.优化选择最小二乘支持向量机参数,以理想滤波器的幅度响应作为学习样本,通过最小二乘支持向量机训练,使得实际滤波器的幅度响应逼近理想滤波器的幅度响应.仿真结果表明,由该方法设计的一维和二维滤波器性能接近于理想滤波器. 相似文献
10.
基于最小二乘支持向量机回归的基坑变形预测 总被引:1,自引:0,他引:1
将最小二乘支持向量机回归用于基坑变形预测.根据基坑位移的实测时间序列资料,应用最小二乘支持向量机回归建立了基坑位移与时间的关系模型.研究结果表明,最小二乘支持向量机回归用于基坑变形预测,具有较高的预测精度.与通常采用的BP神经网络相比,该方法具有预测误差小、计算快速、所需数据少等优点. 相似文献
11.
向昌盛 《湖南科技大学学报(自然科学版)》2012,27(2):111-116
针对害虫发生量数据的小样本、非线性特点,提出一种最小二乘支持向量机的害虫预测方法.首先采用多元线性回归分析法选择害虫发生量的影响因子,然后通过遗传算法对最小二乘支持向量机参数进行优化,最后建立害虫发生量与影响因子之间复杂的非线性关系模型.采用二代玉米螟百株幼虫虫量对模型性能进行检验,结果表明,相对于多元线性回归、BP神经网络模型,最小二乘支持向量机提高了二代玉米螟发虫量的预测精度,是一种有效的害虫变化预测方法. 相似文献
12.
提出基于最小二乘支持向量机动态逆的一种非线性系统自适应控制方法.该方法采用最小二乘支持向量机辨识非线性系统的动态逆模型,并将其串联在原系统之前得到复合的伪线性系统.对于建模误差、不确定因素等引起的非线性系统逆误差,采用在线最小二乘支持向量机进行自适应补偿.最小二乘支持向量机的在线参数调整规律由Lyapunov稳定性理论导出,并证明了非线性闭环系统的稳定性.仿真结果证明了该方法的有效性. 相似文献
13.
何敏藩 《佛山科学技术学院学报(自然科学版)》2008,26(4)
支撑向量机是以统计学习理论为基础,以结构风险最小化(Structure Risk Minimization,SRM)为原则的新型学习机,已经广泛地用于模式识别、回归估计、函数逼近、密度估计等方面。在对已有的分类问题的SVM算法的研究分析基础上,结合Lin和Wang提出的模糊支撑向量机模型和现有的最小二乘支撑向量机模型得出最小二乘模糊支撑向量机模型。 相似文献
14.
遗传算法优化最小二乘支持向量机的故障诊断 总被引:1,自引:1,他引:1
提出一种基于遗传算法分层优化多类最小二乘支持向量机(least squares supportveotor machine,LS-SVM)的故障诊断模型。首先将故障信号经验模态分解(empirical mode decomposition,EMD)为平稳本征模态(intrinsic mode function,I MF)分量,再选择表征故障调制特征的I MF分量并提取瞬时幅值能量作为故障特征输入到遗传算法分层优化好的采用多项式核的多类LS-SVM中进行故障识别。EMD分解可自适应分离故障调制信号;瞬时幅值能量矢量的不同表征各类故障的可分性;遗传算法分层优化惩罚因子和多项式核参数可以使LS-SVM摆脱对故障类型与模式编号映射关系先验知识的依赖,提高LS-SVM的故障预测精度和自适应诊断能力,并可以推广应用于线性、径向基、Sigmoid等核条件下的LS-SVM优化。一个深沟球轴承故障诊断实例说明该模型的有效性。 相似文献
15.
青霉素发酵过程具有时变性和高度非线性,对菌体浓度等的在线测量十分困难。最小二乘支持向量机建模,虽然提高了预测速度,但是预测精度有所欠缺。为提高预测精度,本文在最小二乘支持向量机中引入模糊思想,采用一种基于类中心距离的模糊隶属度函数,为青霉素发酵过程菌体浓度建立预测模型。原理分析与仿真结果表明模糊最小二乘支持向量机建模方法相比于单一的最小二乘支持向量机建模,它的预测精度高,性能更加优越。 相似文献
16.
以车轮参考滑移率和角加速度作为输入向量,以制动轮缸的制动压力作为输出向量,设计了基于最小二乘支持向量机(LS-SVM)的汽车防抱死制动系统(ABS)控制器,利用支持向量对控制器进行训练得到控制器的参数.设计了包括输入层、控制层和输出层的汽车防抱死控制系统,系统以各轮的速度作为输入向量,经过控制层的运算得到各轮的制动压力,然后采用PwM(pulsewidth modulation)方法控制轮缸压力,进而实现防抱死控制.搭建了汽车ABS测控系统,参照国际标准,在不同条件下进行道路试验.试验结果表明,基于LS-SVM的汽车防抱死制动控制方法具有良好的制动平稳性和自适应性,是一种有效的新的ABS控制方法. 相似文献
17.
基于最小二乘支持向量机的复杂金融时间序列预测 总被引:15,自引:0,他引:15
为了解决神经网络算法预测海量金融时间序列数据会出现训练速度慢,内存开销大等问题,提出一种基于最小二乘支持向量机的复杂金融数据时间序列预测方法.该方法将传统的支持向量机中的不等式约束改为等式约束,且将误差平方和的损失函数作为训练集的经验函数,这样把二次规划问题转化为求解线性方程组问题,提高求解问题的速度和收敛精度.实验中以证券指数为实验数据,对大批量金融数据进行了时间序列预测,相比于神经网络预测方法,该方法在大批量金融数据时间序列预测的训练时间、训练次数和预测误差上都有了明显提高,对复杂金融时间序列具有较好的预测效果. 相似文献
18.
采用互相关代替自相关的方法计算基准图子图的相关长度,引入子图均值标准化的方法计算基准图子图的地形熵,使得它们的计算值和基准图子图的匹配概率之间具有良好的单调性.以相关长度、地形熵和粗糙度作为反映基准图子图适配性的特征向量,采用最小二乘支持向量机作为分类工具,将基准图子图划分为适配的和非适配的两类,并由适配的基准图子图类构成地形匹配区.实验结果表明所提出的方法能够有效地规划出所需的三维地形匹配区. 相似文献