首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Pax3/Pax7-dependent population of skeletal muscle progenitor cells   总被引:2,自引:0,他引:2  
Relaix F  Rocancourt D  Mansouri A  Buckingham M 《Nature》2005,435(7044):948-953
  相似文献   

2.
Self-renewal and expansion of single transplanted muscle stem cells   总被引:2,自引:0,他引:2  
Sacco A  Doyonnas R  Kraft P  Vitorovic S  Blau HM 《Nature》2008,456(7221):502-506
Adult muscle satellite cells have a principal role in postnatal skeletal muscle growth and regeneration. Satellite cells reside as quiescent cells underneath the basal lamina that surrounds muscle fibres and respond to damage by giving rise to transient amplifying cells (progenitors) and myoblasts that fuse with myofibres. Recent experiments showed that, in contrast to cultured myoblasts, satellite cells freshly isolated or satellite cells derived from the transplantation of one intact myofibre contribute robustly to muscle repair. However, because satellite cells are known to be heterogeneous, clonal analysis is required to demonstrate stem cell function. Here we show that when a single luciferase-expressing muscle stem cell is transplanted into the muscle of mice it is capable of extensive proliferation, contributes to muscle fibres, and Pax7(+)luciferase(+) mononucleated cells can be readily re-isolated, providing evidence of muscle stem cell self-renewal. In addition, we show using in vivo bioluminescence imaging that the dynamics of muscle stem cell behaviour during muscle repair can be followed in a manner not possible using traditional retrospective histological analyses. By imaging luciferase activity, real-time quantitative and kinetic analyses show that donor-derived muscle stem cells proliferate and engraft rapidly after injection until homeostasis is reached. On injury, donor-derived mononucleated cells generate massive waves of cell proliferation. Together, these results show that the progeny of a single luciferase-expressing muscle stem cell can both self-renew and differentiate after transplantation in mice, providing new evidence at the clonal level that self-renewal is an autonomous property of a single adult muscle stem cell.  相似文献   

3.
De novo cardiomyocytes from within the activated adult heart after injury   总被引:2,自引:0,他引:2  
A significant bottleneck in cardiovascular regenerative medicine is the identification of a viable source of stem/progenitor cells that could contribute new muscle after ischaemic heart disease and acute myocardial infarction. A therapeutic ideal--relative to cell transplantation--would be to stimulate a resident source, thus avoiding the caveats of limited graft survival, restricted homing to the site of injury and host immune rejection. Here we demonstrate in mice that the adult heart contains a resident stem or progenitor cell population, which has the potential to contribute bona fide terminally differentiated cardiomyocytes after myocardial infarction. We reveal a novel genetic label of the activated adult progenitors via re-expression of a key embryonic epicardial gene, Wilm's tumour 1 (Wt1), through priming by thymosin β4, a peptide previously shown to restore vascular potential to adult epicardium-derived progenitor cells with injury. Cumulative evidence indicates an epicardial origin of the progenitor population, and embryonic reprogramming results in the mobilization of this population and concomitant differentiation to give rise to de novo cardiomyocytes. Cell transplantation confirmed a progenitor source and chromosome painting of labelled donor cells revealed transdifferentiation to a myocyte fate in the absence of cell fusion. Derived cardiomyocytes are shown here to structurally and functionally integrate with resident muscle; as such, stimulation of this adult progenitor pool represents a significant step towards resident-cell-based therapy in human ischaemic heart disease.  相似文献   

4.
R K Ho  E E Ball  C S Goodman 《Nature》1983,301(5895):66-69
During embryonic development, muscles differentiate in the appropriate places and motoneurone growth cones find the appropriate muscles; both events occur concurrently and with remarkable specificity. What are the cellular interactions that orchestrate this coordinated development of nerve and muscle? In the development of vertebrate skeletal muscles, motoneurone growth cones arrive in the periphery along stereotyped routes and enter the appropriately located masses of mesodermal cells usually before differentiated muscle fibres appear and before the masses cleave into separate muscles. We find that a similar sequence of events occurs in the grasshopper embryo. We are interested in how mesodermal cells become organized into the appropriate muscles and what guides motoneurone growth cones to their appropriate targets. Fortunately, in the grasshopper embryo the mesodermal cells in the periphery and motoneurones in the central nervous system (CNS) are large, accessible and in many cases individually identifiable from early in their development. We report here the discovery of a class of large mesodermal cells, which we call muscle pioneers, that arise early in development when the embryonic environment is relatively simple and distances short. By their growth and association with particular sites along the ectoderm, the muscle pioneers appear to erect a scaffold for later developing muscles and motoneurone growth cones.  相似文献   

5.
6.
Neural crest regulates myogenesis through the transient activation of NOTCH   总被引:1,自引:0,他引:1  
Rios AC  Serralbo O  Salgado D  Marcelle C 《Nature》2011,473(7348):532-535
How dynamic signalling and extensive tissue rearrangements interact to generate complex patterns and shapes during embryogenesis is poorly understood. Here we characterize the signalling events taking place during early morphogenesis of chick skeletal muscles. We show that muscle progenitors present in somites require the transient activation of NOTCH signalling to undergo terminal differentiation. The NOTCH ligand Delta1 is expressed in a mosaic pattern in neural crest cells that migrate past the somites. Gain and loss of Delta1 function in neural crest modifies NOTCH signalling in somites, which results in delayed or premature myogenesis. Our results indicate that the neural crest regulates early muscle formation by a unique mechanism that relies on the migration of Delta1-expressing neural crest cells to trigger the transient activation of NOTCH signalling in selected muscle progenitors. This dynamic signalling guarantees a balanced and progressive differentiation of the muscle progenitor pool.  相似文献   

7.
The neck and shoulder region of vertebrates has undergone a complex evolutionary history. To identify its underlying mechanisms we map the destinations of embryonic neural crest and mesodermal stem cells using Cre-recombinase-mediated transgenesis. The single-cell resolution of this genetic labelling reveals cryptic cell boundaries traversing the seemingly homogeneous skeleton of the neck and shoulders. Within this assembly of bones and muscles we discern a precise code of connectivity that mesenchymal stem cells of both neural crest and mesodermal origin obey as they form muscle scaffolds. The neural crest anchors the head onto the anterior lining of the shoulder girdle, while a Hox-gene-controlled mesoderm links trunk muscles to the posterior neck and shoulder skeleton. The skeleton that we identify as neural crest-derived is specifically affected in human Klippel-Feil syndrome, Sprengel's deformity and Arnold-Chiari I/II malformation, providing insights into their likely aetiology. We identify genes involved in the cellular modularity of the neck and shoulder skeleton and propose a new method for determining skeletal homologies that is based on muscle attachments. This has allowed us to trace the whereabouts of the cleithrum, the major shoulder bone of extinct land vertebrate ancestors, which seems to survive as the scapular spine in living mammals.  相似文献   

8.
运动人体科学界、运动医学界普遍认为炎症诱导肌卫星细胞激活的机制是运动性骨骼肌适应的最重要机制。运动肌会因机械损伤、缺血/再灌注、钙离子升高尤其牵拉激活型Ca^2+通道激活导致的Ca^2+升高,产生肿瘤坏死因子-α(tumornec rosisfactor,TNF-α)、白细胞介素-1β(interleukin-1β,IL-1β)、白细胞介素-8(interleukin-8,IL-8)等各种促炎症因子。这些细胞因子以内皮细胞为媒介将白细胞尤其是中性粒细胞由血液引向骨骼肌组织导致炎症发生。一定范围内或一定程度的炎症反应过程中,炎症造成的缺氧及炎症募集的ED^2+巨噬细胞产生的成纤生长因子、胰岛素样生长因子-1会激活卫星,随着卫星细胞内各种肌源性调节因子的程序性合成,卫星细胞并从G0期重返细胞周期,进行细胞的增殖,既实现卫星细胞的自我更新、维持,又有序地进行细胞分化、同损伤肌细胞融合,最终完成骨骼肌的正常生长、损伤肌肉的修复及再生。  相似文献   

9.
H Lutz  H Weber  R Billeter  E Jenny 《Nature》1979,281(5727):142-144
There is good evidence for the coexistence of different myosin types both in developing muscles and in Purkinje cells from adult chicken hearts. In skeletal muscle fibres of adult animals, however, coexistence of fast (FM) and slow (SM) myosin has only been demonstrated after long-term electrical stimulation. The term 'promiscuity' has recently been coined to describe the coexistence of different myosin isoenzymes within a single fibre. Using novel, refined immunological methods we demonstrate here the presence of both FM and SM within single fibres of the musculus tibialis anterior of adult rabbits. Essentially identical results were also obtained with other muscles. Our findings imply that the genes coding for FM and SM can be expressed simultaneously within the same cell throughout an animal's entire life, and not only during development or after artificial electrical stimulation.  相似文献   

10.
运动对肌卫星细胞的影响及其机制研究进展   总被引:1,自引:0,他引:1  
肌卫星细胞是骨骼肌再生、肥大的基础,平时处于相对静止状态,运动可通过多种途径对肌卫星细胞的激活、增殖和分化产生影响.综述了运动对肌卫星细胞激活、增殖、分化的机制,并就今后的研究进行了展望.  相似文献   

11.
Cardiac failure has a principal underlying aetiology of ischaemic damage arising from vascular insufficiency. Molecules that regulate collateral growth in the ischaemic heart also regulate coronary vasculature formation during embryogenesis. Here we identify thymosin beta4 (Tbeta4) as essential for all aspects of coronary vessel development in mice, and demonstrate that Tbeta4 stimulates significant outgrowth from quiescent adult epicardial explants, restoring pluripotency and triggering differentiation of fibroblasts, smooth muscle cells and endothelial cells. Tbeta4 knockdown in the heart is accompanied by significant reduction in the pro-angiogenic cleavage product N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). Although injection of AcSDKP was unable to rescue Tbeta4 mutant hearts, it significantly enhanced endothelial cell differentiation from adult epicardially derived precursor cells. This study identifies Tbeta4 and AcSDKP as potent stimulators of coronary vasculogenesis and angiogenesis, and reveals Tbeta4-induced adult epicardial cells as a viable source of vascular progenitors for continued renewal of regressed vessels at low basal level or sustained neovascularization following cardiac injury.  相似文献   

12.
C R Kintner  J P Brockes 《Nature》1984,308(5954):67-69
Blastemal cells arise after the amputation of limbs or tails in urodele amphibians. These histologically undifferentiated mesenchymal cells divide and subsequently differentiate to regenerate a new appendage. Various studies (reviewed in ref. 1) indicate that blastemal cells arise from tissues near the site of amputation, including muscle, cartilage, nerve and dermis. The multinucleated myofibre, however, is a controversial source of blastemal cells. The suggestion that myofibres can dedifferentiate is based on their histological appearance during the early stages of limb regeneration. This is contrary to the widely accepted view of muscle regeneration in higher vertebrates which attributes it to satellite cells. One prediction of the dedifferentiation hypothesis is that a population with properties of both myofibres and blastema cells should be present during the early stages of regeneration. Here we described the isolation of two monoclonal antibodies, one that recognizes an antigen found only in myofibres and another that recognizes an antigen restricted to blastemal cells. By using these antibodies as cell markers, we can detect a small population of cells in the regenerating limbs of adult newts that bear both the myofibre and blastemal cell antigens. The time and location of these double-labelled cells supports the idea that blastemal cells originate, in part, by dedifferentiation of myofibres.  相似文献   

13.
Carlson ME  Hsu M  Conboy IM 《Nature》2008,454(7203):528-532
Adult skeletal muscle robustly regenerates throughout an organism's life, but as the muscle ages, its ability to repair diminishes and eventually fails. Previous work suggests that the regenerative potential of muscle stem cells (satellite cells) is not triggered in the old muscle because of a decline in Notch activation, and that it can be rejuvenated by forced local activation of Notch. Here we report that, in addition to the loss of Notch activation, old muscle produces excessive transforming growth factor (TGF)-beta (but not myostatin), which induces unusually high levels of TGF-beta pSmad3 in resident satellite cells and interferes with their regenerative capacity. Importantly, endogenous Notch and pSmad3 antagonize each other in the control of satellite-cell proliferation, such that activation of Notch blocks the TGF-beta-dependent upregulation of the cyclin-dependent kinase (CDK) inhibitors p15, p16, p21 and p27, whereas inhibition of Notch induces them. Furthermore, in muscle stem cells, Notch activity determines the binding of pSmad3 to the promoters of these negative regulators of cell-cycle progression. Attenuation of TGF-beta/pSmad3 in old, injured muscle restores regeneration to satellite cells in vivo. Thus a balance between endogenous pSmad3 and active Notch controls the regenerative competence of muscle stem cells, and deregulation of this balance in the old muscle microniche interferes with regeneration.  相似文献   

14.
Conboy IM  Conboy MJ  Wagers AJ  Girma ER  Weissman IL  Rando TA 《Nature》2005,433(7027):760-764
The decline of tissue regenerative potential is a hallmark of ageing and may be due to age-related changes in tissue-specific stem cells. A decline in skeletal muscle stem cell (satellite cell) activity due to a loss of Notch signalling results in impaired regeneration of aged muscle. The decline in hepatic progenitor cell proliferation owing to the formation of a complex involving cEBP-alpha and the chromatin remodelling factor brahma (Brm) inhibits the regenerative capacity of aged liver. To examine the influence of systemic factors on aged progenitor cells from these tissues, we established parabiotic pairings (that is, a shared circulatory system) between young and old mice (heterochronic parabioses), exposing old mice to factors present in young serum. Notably, heterochronic parabiosis restored the activation of Notch signalling as well as the proliferation and regenerative capacity of aged satellite cells. The exposure of satellite cells from old mice to young serum enhanced the expression of the Notch ligand (Delta), increased Notch activation, and enhanced proliferation in vitro. Furthermore, heterochronic parabiosis increased aged hepatocyte proliferation and restored the cEBP-alpha complex to levels seen in young animals. These results suggest that the age-related decline of progenitor cell activity can be modulated by systemic factors that change with age.  相似文献   

15.
Rossi SW  Jenkinson WE  Anderson G  Jenkinson EJ 《Nature》2006,441(7096):988-991
The thymus provides an essential environment for the development of T cells from haemopoietic progenitors. This environment is separated into cortical and medullary regions, each containing functionally distinct epithelial populations that are important at successive stages of T-cell development and selection. However, the developmental origin and lineage relationships between cortical and medullary epithelial cell types remain controversial. Here we describe a clonal assay to investigate the developmental potential of single, individually selected, thymic epithelial progenitors (marked with enhanced yellow fluorescent protein) developing within the normal architecture of the thymus. Using this approach, we show that cortical and medullary epithelial cells share a common origin in bipotent precursors, providing definitive evidence that they have a single rather than dual germ layer origin during embryogenesis. Our findings resolve a long-standing issue in thymus development, and are important in relation to the development of cell-based strategies for thymus disorders and the possibility of restoring function of the atrophied adult thymus.  相似文献   

16.
Generation of chick skeletal muscle cells in groups of 16 from stem cells   总被引:3,自引:0,他引:3  
L S Quinn  H Holtzer  M Nameroff 《Nature》1985,313(6004):692-694
The commonly accepted hypothesis explaining the control of skeletal muscle differentiation is that all myogenic precursor cells are equivalent and that they differentiate into post-mitotic muscle cells in response to exogenous signals, specifically low mitogen concentrations. Large clones derived from vertebrate myogenic cells, however, consist both of cycling precursors and of terminally differentiated, post-mitotic muscle cells. Here, we count the total number of cells and the number of terminally differentiated cells (or nuclei, in fused cells) in large myogenic clones. The number of terminally differentiated cells per clone was usually equal to or just below a multiple of 16. This finding is not expected from a model postulating a homogeneous population of muscle precursor cells. Rather, our results suggest that a self-renewing stem cell exists in the skeletal muscle lineage. This cell can generate committed precursors which then give rise to cohorts of 16 terminally differentiated muscle cells. This model of myogenesis provides a simple explanation for the protracted and asynchronous nature of muscle differentiation in vertebrate embryogenesis.  相似文献   

17.
Wada H  Masuda K  Satoh R  Kakugawa K  Ikawa T  Katsura Y  Kawamoto H 《Nature》2008,452(7188):768-772
During haematopoiesis, pluripotent haematopoietic stem cells are sequentially restricted to give rise to a variety of lineage-committed progenitors. The classical model of haematopoiesis postulates that, in the first step of differentiation, the stem cell generates common myelo-erythroid progenitors and common lymphoid progenitors (CLPs). However, our previous studies in fetal mice showed that myeloid potential persists even as the lineage branches segregate towards T and B cells. We therefore proposed the 'myeloid-based' model of haematopoiesis, in which the stem cell initially generates common myelo-erythroid progenitors and common myelo-lymphoid progenitors. T-cell and B-cell progenitors subsequently arise from common myelo-lymphoid progenitors through myeloid-T and myeloid-B stages, respectively. However, it has been unclear whether this myeloid-based model is also valid for adult haematopoiesis. Here we provide clonal evidence that the early cell populations in the adult thymus contain progenitors that have lost the potential to generate B cells but retain substantial macrophage potential as well as T-cell, natural killer (NK)-cell and dendritic-cell potential. We also show that such T-cell progenitors can give rise to macrophages in the thymic environment in vivo. Our findings argue against the classical dichotomy model in which T cells are derived from CLPs; instead, they support the validity of the myeloid-based model for both adult and fetal haematopoiesis.  相似文献   

18.
Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice   总被引:4,自引:0,他引:4  
In vertebrates, skeletal muscle is a model for the acquisition of cell fate from stem cells. Two determination factors of the basic helix-loop-helix myogenic regulatory factor (MRF) family, Myf5 and Myod, are thought to direct this transition because double-mutant mice totally lack skeletal muscle fibres and myoblasts. In the absence of these factors, progenitor cells remain multipotent and can change their fate. Gene targeting studies have revealed hierarchical relationships between these and the other MRF genes, Mrf4 and myogenin, where the latter are regarded as differentiation genes. Here we show, using an allelic series of three Myf5 mutants that differentially affect the expression of the genetically linked Mrf4 gene, that skeletal muscle is present in the new Myf5:Myod double-null mice only when Mrf4 expression is not compromised. This finding contradicts the widely held view that myogenic identity is conferred solely by Myf5 and Myod, and identifies Mrf4 as a determination gene. We revise the epistatic relationship of the MRFs, in which both Myf5 and Mrf4 act upstream of Myod to direct embryonic multipotent cells into the myogenic lineage.  相似文献   

19.
20.
肌肉疲劳及肌肉损伤机理自由基学说研究综述   总被引:3,自引:0,他引:3  
随着竞技体育的飞速发展,许多运动员在训练和比赛中承受的负荷越来越大,时间越来越长,由肌肉收缩所导致的肌肉损伤呈现逐渐增加的趋势,直接影响运动员正常的训练和比赛,制约了运动技能的维持和发展,严重者会导致运动生涯的缩短。目前运动负荷所致肌肉损伤的确切机理尚不十分清楚。据此,本研究通过自由基和脂质过氧化反应及调节损伤修复的生长因子层面,系统分析和探讨了肌肉疲劳及肌肉损伤和损伤产生的机制,以期为运动训练提供一些理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号