首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 328 毫秒
1.
建立COREX熔化气化炉的半周三维冷态模型,利用高速摄影的方法跟踪冷态模型内示踪粒子的运动,得到冷模型观察面板处风口回旋区的颗粒运动信息,通过对大量颗粒运动信息的处理得到风口回旋区范围的颗粒速度标量场,运用分形理论对利用不同颗粒速度大小等值线界定的回旋区边界的"不规则"程度进行了研究,准确界定了风口回旋区边界.研究结果为风口回旋区的宏观动力学计算以及数值模拟提供准确的边界条件.  相似文献   

2.
以COREX熔化气化炉实际尺寸和操作参数为基础,根据相似准则建立了COREX熔化气化炉模型,用以研究气化炉内物料运动过程。实验采用聚乙烯粒子作为模型的填充物料,并选用绿豆作为示踪颗粒,分析研究了气化炉内鼓风流量和排料速度对物料运动流型和运动轨迹的影响。结果表明:随着排料速度的增加,停留时间减小,死料柱顶点位置降低,物料下降运动变得不均匀;随着鼓风流量的增加,上部料层的下降更加均匀;非正常排料时,熔化气化炉内物料的运动将很不均匀,气化炉一侧物料的运动并不受另一侧物料的影响;位于死料柱正上方的颗粒下降速度最慢并向排料口弯曲;位于风口回旋区正上方的颗粒下降速度最快,鼓风导致风口回旋区上方的颗粒停留时间减小;靠近炉墙处的颗粒,其下降过程一直沿炉墙下降,直至靠近排料口时发生弯曲。  相似文献   

3.
利用温度梯度分析COREX熔化气化炉内区域   总被引:1,自引:1,他引:0  
建立了COREX熔化气化炉热态模型;利用石蜡模拟矿石,玉米颗粒模拟焦炭,通过温度传感器对炉内气相温度进行了测定.对测得的模型内温度信息进行处理,可以获得模型内温度梯度.对熔化气化炉在高度方向的温度梯度进行分析,可大致区分炉内填充床、软熔区域、半焦床以及风口回旋区的范围.该研究方法可以比较客观地描述COREX熔化气化炉内部的各区域,以便在进一步研究中分析操作条件变化对炉内各个区域的影响.  相似文献   

4.
为了研究COREX-C3000气化炉,开发了COREX工艺静态模型和实验系统.COREX工艺静态模型是建立在物料平衡和热量平衡基础上的,根据生产现场工艺操作参数设定输入参数,计算结果用于物理实验参数的设定.COREX物理实验系统是建立在相似原理基础上的,模型设有插入式热电偶和观察面板,可获得模型内部信息.实验发现,随着排料速度、石蜡颗粒和玉米颗粒体积比、风温和风量等实验参数增大,风口回旋区越容易发生塌料现象,并初步分析风口回旋区内塌料的影响.  相似文献   

5.
COREX熔化气化炉风口回旋区是炉况顺行的基础,在冶炼过程中起着十分重要的作用,为了描述其形状和大小,建立了CFD+DEM(ComputationalFluidDynamicsandDiscreteElementMethod)耦合模型,对回旋区形成过程及大小进行了颗粒尺度的分析.得到床层高度为04m,气体速度1174m/s的条件下回旋区颗粒空隙度分布,当吹气时间为013s时,气体入口附近有颗粒被吹开,随着时间的推进,气体动能吹开的颗粒增多,019~021s时,形成的回旋区开始稳定.对入口处不同气体速度条件下回旋区及其附近颗粒速度进行了计算模拟.模拟结果显示,风口附近颗粒在做回旋运动,并且随着入口气体速度的增大,吹开的颗粒增多,回旋区空腔增大,当入口气体速度为1174m/s和1683m/s时形成的回旋区较稳定,当入口气体速度大于2190m/s时形成的回旋区不太稳定.  相似文献   

6.
为了模拟COREX熔化气化炉软熔区域,建立了COREX熔化气化炉热态模型,设有热电偶和观察面板,可获得模型内部信息.在热态物理模拟实验中,考察了排料速度、石蜡与玉米体积比、风温和风量等操作参数对软熔区域的影响.实验结果表明,随着所选实验参数值的增加,风口回旋区发生塌料现象的可能性增加;当排料速度增加时,软熔区域位置降低,厚度减少;当石蜡与玉米体积比增加时,塌料前软熔区域位置升高,厚度增加,塌料后软熔区域位置降低,厚度增加;当风温增加时,塌料前软熔区域位置升高,厚度增加,塌料后软熔区域位置降低,厚度减少;当风量增加时,发生塌料前后软熔区域都位置升高,厚度增加.  相似文献   

7.
风口回旋区的传热传质过程与其内表面积密切相关.以COREX熔化气化炉物理模拟为基础,运用欧氏理论和分形理论确定了不同条件下回旋区的内表面积.结果表明:运用分形理论计算的回旋区内表面积较欧氏理论计算的回旋区内表面积大;随着气量增大,回旋区内表面积增大;随床层高度增大,回旋区内表面积减小;随排料速度增大,回旋区内表面积增大.  相似文献   

8.
建立COREX工艺熔融气化炉移动床区域炉料流动的DEM模型。通过炉料自然堆积过程的DEM模拟,确定了固体颗粒之间的滚动摩擦系数。炉料流动的DEM模拟结果与试验研究结果吻合的较好。研究了移动床区域炉料的流动规律、死料柱形状及尺寸以及颗粒间法向应力的分布规律,同时分析了风口回旋区炉料消耗速率对应力分布的影响。研究结果表明:熔融气化炉移动床区域可分为四个不同的子区域,死料柱区域法向力最大,其次为壁面附近区域,稳定流动区和活跃区内颗粒之间法向力最小。  相似文献   

9.
建立熔融还原炼铁(coal reduction extreme,COREX)工艺熔融气化炉移动床区域炉料流动离散单元法(discrete element method,DEM)模型。通过炉料自然堆积过程的DEM模拟,确定了固体颗粒之间的滚动摩擦系数。炉料流动的DEM模拟结果与试验研究结果吻合的较好。研究了移动床区域炉料的流动规律、死料柱形状及尺寸以及颗粒间法向应力的分布规律,同时分析了风口回旋区炉料消耗速率对应力分布的影响。研究结果表明:熔融气化炉移动床区域可分为四个不同的子区域,死料柱区域法向力最大,其次为壁面附近区域,稳定流动区和活跃区内颗粒之间法向力最小。  相似文献   

10.
休风时对COREX熔融气化炉进行风口取样,通过对风口试样的检测分析,用压差度的倒数表示炉内气相对料柱透液性的影响,用空隙度和温度强度的乘积表示炉内的渣铁液相对料柱透液性的影响,建立了表征熔融气化炉料柱透液性的公式.对两批风口试样的研究发现,熔融气化炉内不同位置风口试样的透液性指数与相应位置的滞留铁比呈现一致的对应关系.进一步分析了透液性指数的影响因素,发现在炉况不顺时,未反应完全的酸性脉石直接落入炉缸,导致沿风口径向部分位置的渣样熔化温度高于1500℃,影响了渣铁流动性.提出了增加料层厚度、采取合理的造渣制度、控制均匀的煤气流分布等技术措施,为改善熔融气化炉内料柱的透液性提供帮助.  相似文献   

11.
为进一步探索COREX过程固体物料的运动状态,对COREX过程中涉及到的细小颗粒渗流行为进行了DEM模拟。考察不同颗粒直径比、阻尼系数及滑动摩擦系数对细小颗粒渗流行为的影响,特别是计算得到不同模拟参数下细小颗粒在填充床内的运动轨迹。模拟结果显示,渗流过程中细小颗粒的平均渗流速度为一定值。随着颗粒直径比的增加,颗粒竖直方向的渗流速度逐渐减小,停留时间与径向弥散逐渐变大。随着颗粒间阻尼系数的增加,颗粒渗流速度逐渐增加,停留时间逐渐减小,径向弥散逐渐变小。滑动摩擦系数对细小颗粒的渗流行为影响较小。从细小颗粒运动轨迹分析可知,颗粒直径比变大时,细小颗粒易在空隙中缓慢移动,易趋于静止床层中,导致颗粒沉积。随着颗粒间阻尼系数变小,颗粒运动轨迹向填充床边缘发展,偏离床层中心。  相似文献   

12.
利用已建立的COREX工艺系统模拟模型考察了熔化气化炉和竖炉匹配操作条件及在匹配操作范围内系统的能耗和能量利用。结果表明:煤中挥发分含量对煤耗影响很大,配煤控制应是COREX工艺操作关键一环;挥发分含量增加,与之相匹配操作的熔化气化炉出口荒煤气氧化度可相应增加;提高熔化气化炉出口荒煤气氧化度和降低其温度均可提高能量利用率;COREX工艺系统的最大能量利用率为50%左右,合理有效地利用COREX富产煤气是解决该工艺能量利用问题的关键;荒煤气温度与竖炉入口还原煤气温度相比,应该维持在更高温度。  相似文献   

13.
由激光多普勒测速仪获得了提升管中颗粒速度的瞬时信号 ,分析了提升管中颗粒的微观运动特征。研究表明 ,局部位置上颗粒速度概率密度分布为双峰形式 ,两峰分别对应于稀相中的颗粒与密相颗粒团 ,可用正态分布函数描述其双峰 ,并由此获得稀相中的颗粒及密相颗粒团的速度和两相的相含率。稀相中的颗粒及密相颗粒团的速度沿径向的分布为中心高、边壁低 ,且床中心区以稀相为主导 ,边壁区则被颗粒团所控制。提升管两相的微观运动特征及其分布造成了提升管内固含率及颗粒速度径向分布的不均匀宏观现象。  相似文献   

14.
针对熔融气化炉冷煤气成分含量,提出了基于熵权模糊C均值聚类和偏最小二乘的COREX冷煤气成分预测方法.建模过程中首先根据料单中各种原料的单耗量,利用熵权模糊C均值聚类的方法将料单聚类成若干种料单类别,然后针对不同的料单类别,利用偏最小二乘法分别建立冷煤气成分预测模型.对宝钢COREX-1#炉实际生产数据验证结果表明:该方法可以有效地建立COREX冷煤气成分预测模型,具有较好的预测精度.  相似文献   

15.
基于离散单元数值计算方法,建立COREX竖炉内物料颗粒尺度运动行为的数学模型,研究炉内物料运动流型及其瞬态特性,特别是颗粒的瞬态速度和瞬态应力分布.模拟结果表明:COREX竖炉内存在三种类型的流动区域:活塞流区、准停滞区以及沟流区.炉内颗粒的瞬态速度分布表明炉内存在两种类型的速度波:装料过程引发的向下传播的速度波和底部排料引发的向上传播的速度波.COREX竖炉内颗粒法向应力随时间的变化较小,竖炉底部导流锥顶部存在较强的应力区,而无导流锥竖炉底部中心存在较强应力区,沟流区的应力较弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号