首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 857 毫秒
1.
Mariani FV  Ahn CP  Martin GR 《Nature》2008,453(7193):401-405
Half a century ago, the apical ectodermal ridge (AER) at the distal tip of the tetrapod limb bud was shown to produce signals necessary for development along the proximal-distal (P-D) axis, but how these signals influence limb patterning is still much debated. Fibroblast growth factor (FGF) gene family members are key AER-derived signals, with Fgf4, Fgf8, Fgf9 and Fgf17 expressed specifically in the mouse AER. Here we demonstrate that mouse limbs lacking Fgf4, Fgf9 and Fgf17 have normal skeletal pattern, indicating that Fgf8 is sufficient among AER-FGFs to sustain normal limb formation. Inactivation of Fgf8 alone causes a mild skeletal phenotype; however, when we also removed different combinations of the other AER-FGF genes, we obtained unexpected skeletal phenotypes of increasing severity, reflecting the contribution that each FGF can make to the total AER-FGF signal. Analysis of the compound mutant limb buds revealed that, in addition to sustaining cell survival, AER-FGFs regulate P-D-patterning gene expression during early limb bud development, providing genetic evidence that AER-FGFs function to specify a distal domain and challenging the long-standing hypothesis that AER-FGF signalling is permissive rather than instructive for limb patterning. We discuss how a two-signal model for P-D patterning can be integrated with the concept of early specification to explain the genetic data presented here.  相似文献   

2.
A Zú?iga  A P Haramis  A P McMahon  R Zeller 《Nature》1999,401(6753):598-602
Outgrowth and patterning of the vertebrate limb are controlled by reciprocal interactions between the posterior mesenchyme (polarizing region) and a specialized ectodermal structure, the apical ectodermal ridge (AER). Sonic hedgehog (SHH) signalling by the polarizing region modulates fibroblast growth factor (FGF)4 signalling by the posterior AER, which in turn maintains the polarizing region (SHH/FGF4 feedback loop). Here we report that the secreted bone-morphogenetic-protein (BMP) antagonist Gremlin relays the SHH signal from the polarizing region to the AER. Mesenchymal Gremlin expression is lost in limb buds of mouse embryos homozygous for the limb deformity (Id) mutation, which disrupts establishment of the SHH/FGF4 feedback loop. Grafting Gremlin-expressing cells into ld mutant limb buds rescues Fgf4 expression and restores the SHH/FGF4 feedback loop. Analysis of Shh-null mutant embryos reveals that SHH signalling is required for maintenance of Gremlin and Formin (the gene disrupted by the ld mutations). In contrast, Formin, Gremlin and Fgf4 activation are independent of SHH signalling. This study uncovers the cascade by which the SHH signal is relayed from the posterior mesenchyme to the AER and establishes that Formin-dependent activation of the BMP antagonist Gremlin is sufficient to induce Fgf4 and establish the SHH/FGF4 feedback loop.  相似文献   

3.
Sun X  Mariani FV  Martin GR 《Nature》2002,418(6897):501-508
To determine the role of fibroblast growth factor (FGF) signalling from the apical ectodermal ridge (AER), we inactivated Fgf4 and Fgf8 in AER cells or their precursors at different stages of mouse limb development. We show that FGF4 and FGF8 regulate cell number in the nascent limb bud and are required for survival of cells located far from the AER. On the basis of the skeletal phenotypes observed, we conclude that these functions are essential to ensure that sufficient progenitor cells are available to form the normal complement of skeletal elements, and perhaps other limb tissues. In the complete absence of both FGF4 and FGF8 activities, limb development fails. We present a model to explain how the mutant phenotypes arise from FGF-mediated effects on limb bud size and cell survival.  相似文献   

4.
5.
Developmental basis of limblessness and axial patterning in snakes.   总被引:12,自引:0,他引:12  
M J Cohn  C Tickle 《Nature》1999,399(6735):474-479
The evolution of snakes involved major changes in vertebrate body plan organization, but the developmental basis of those changes is unknown. The python axial skeleton consists of hundreds of similar vertebrae, forelimbs are absent and hindlimbs are severely reduced. Combined limb loss and trunk elongation is found in many vertebrate taxa, suggesting that these changes may be linked by a common developmental mechanism. Here we show that Hox gene expression domains are expanded along the body axis in python embryos, and that this can account for both the absence of forelimbs and the expansion of thoracic identity in the axial skeleton. Hindlimb buds are initiated, but apical-ridge and polarizing-region signalling pathways that are normally required for limb development are not activated. Leg bud outgrowth and signalling by Sonic hedgehog in pythons can be rescued by application of fibroblast growth factor or by recombination with chick apical ridge. The failure to activate these signalling pathways during normal python development may also stem from changes in Hox gene expression that occurred early in snake evolution.  相似文献   

6.
Zeng X  Goetz JA  Suber LM  Scott WJ  Schreiner CM  Robbins DJ 《Nature》2001,411(6838):716-720
The secreted protein Sonic hedgehog (Shh) exerts many of its patterning effects through a combination of short- and long-range signalling. Three distinct mechanisms, which are not necessarily mutually exclusive, have been proposed to account for the long-range effects of Shh: simple diffusion of Shh, a relay mechanism in which Shh activates secondary signals, and direct delivery of Shh through cytoplasmic extensions, termed cytonemes. Although there is much data (using soluble recombinant Shh (ShhN)) to support the simple diffusion model of long-range Shh signalling, there has been little evidence to date for a native form of Shh that is freely diffusible and not membrane-associated. Here we provide evidence for a freely diffusible form of Shh (s-ShhNp) that is cholesterol modified, multimeric and biologically potent. We further demonstrate that the availability of s-ShhNp is regulated by two functional antagonists of the Shh pathway, Patched (Ptc) and Hedgehog-interacting protein (Hip). Finally, we show a gradient of s-ShhNp across the anterior-posterior axis of the chick limb, demonstrating the physiological relevance of s-ShhNp.  相似文献   

7.
C Thaller  G Eichele 《Nature》1987,327(6123):625-628
All-trans-retinoic acid (RA) induces striking digit pattern duplications when locally applied to the developing chick limb bud. Instead of the normal digit pattern (234) a mirror-symmetrical 432234 pattern can be specified. Hence, RA closely mimics posterior limb bud tissue (the zone of polarizing activity, ZPA) that causes very similar duplications when grafted to an anterior site of a host limb bud. This resemblance raises an intriguing possibility: that RA is related to the as yet unidentified inducer substance thought to be released by the ZPA. Here we report that chick limb buds contain endogenous RA and we show that RA, but not its biosynthetic precursor retinol, forms a concentration gradient across the limb anlage with a high-point in the posterior domain of the limb bud, the part that also contains the ZPA.  相似文献   

8.
Attenuation of FGF signalling in mouse beta-cells leads to diabetes   总被引:5,自引:0,他引:5  
Hart AW  Baeza N  Apelqvist A  Edlund H 《Nature》2000,408(6814):864-868
Fibroblast growth factor (FGF) signalling has been implicated in patterning, proliferation and cell differentiation in many organs, including the developing pancreas. Here we show that the FGF receptors (FGFRs) 1 and 2, together with the ligands FGF1, FGF2, FGF4, FGF5, FGF7 and FGF10, are expressed in adult mouse beta-cells, indicating that FGF signalling may have a role in differentiated beta-cells. When we perturbed signalling by expressing dominant-negative forms of the receptors, FGFR1c and FGFR2b, in the pancreas, we found that that mice with attenuated FGFR1c signalling, but not those with reduced FGFR2b signalling, develop diabetes with age and exhibit a decreased number of beta-cells, impaired expression of glucose transporter 2 and increased proinsulin content in beta-cells owing to impaired expression of prohormone convertases 1/3 and 2. These defects are all characteristic of patients with type-2 diabetes. Mutations in the homeobox gene Ipf1/Pdx1 are linked to diabetes in both mouse and human. We also show that Ipf1/Pdx1 is required for the expression of FGFR1 signalling components in beta-cells, indicating that Ipf1/Pdx1 acts upstream of FGFR1 signalling in beta-cells to maintain proper glucose sensing, insulin processing and glucose homeostasis.  相似文献   

9.
10.
C Thaller  G Eichele 《Nature》1990,345(6278):815-819
There is increasing evidence that retinoic acid is a morphogen involved in vertebrate development. This evidence comes in part from studies of the chick wing bud, in which local application of all-trans-retinoic acid results in a duplication of the digit pattern along the anteroposterior axis. Retinoic acid may be only one of several morphogenetic signalling compounds required for limb pattern formation. To identify novel morphogenetically active compounds, fractionated extracts of whole chick embryos were tested for their ability to induce digit pattern duplications. We describe here the isolation of a new activity present in the limb bud, which we have identified as all-trans-3,4-didehydroretinoic acid. The 3,4-didehydroretinoic acid is generated in situ from retinol through a 3,4-didehydroretinol intermediate. We show that 3,4-didehydroretinoic acid and retinoic acid are equipotent in evoking digit duplications. These findings suggest that there are at least two endogenous retinoids with morphogenetic properties in the chick limb.  相似文献   

11.
12.
Y Yokouchi  H Sasaki  A Kuroiwa 《Nature》1991,353(6343):443-445
The complex architecture of the limb cartilage pattern probably develops by the sequential segmentation and branching process of precartilaginous cell condensation under the control of positional signalling provided by the zone of polarizing activity (anteroposterior) and the apical ectodermal ridge (proximodistal). This signalling is monitored and interpreted in the mesenchymal cells and induces the position-specific response of subsets of genes. Homeobox genes may be responsible for the interpretation of signalling. A correlation between limb pattern and expression domains of the homeobox genes in the upstream region of Hox/Chox-4 has been proposed. We have analysed the spatial expression pattern of the Chox-1 genes during development of chick limb buds. In contrast to genes in Hox/Chox-4 expressed coordinately along the anteroposterior axis, homeobox genes in Chox-1 have unique and mutually exclusive expression domains along the proximodistal axis. We report here that the expression domains of the Chox-1 genes are closely related to the segmental structure of cartilage along the proximodistal axis, whereas the expression domains of the Chox-4 genes are related to the cartilage branching pattern.  相似文献   

13.
14.
The acquisition of neural fate by embryonic ectodermal cells is a fundamental step in the formation of the vertebrate nervous system. Neural induction seems to involve signalling by fibroblast growth factors (FGFs) and attenuation of the activity of bone morphogenetic protein (BMP). But FGFs, either alone or in combination with BMP antagonists, are not sufficient to induce neural fate in prospective epidermal ectoderm of amniote embryos. These findings suggest that additional signals are involved in the specification of neural fate. Here we show that the state of Wnt signalling is a critical determinant of neural and epidermal fates in the chick embryo. Continual Wnt signalling blocks the response of epiblast cells to FGF signals, permitting the expression and signalling of BMP to direct an epidermal fate. Conversely, a lack of exposure of epiblast cells to Wnt signals permits FGFs to induce a neural fate.  相似文献   

15.
16.
Ghabrial AS  Krasnow MA 《Nature》2006,441(7094):746-749
Many organs are composed of tubular networks that arise by branching morphogenesis in which cells bud from an epithelium and organize into a tube. Fibroblast growth factors (FGFs) and other signalling molecules have been shown to guide branch budding and outgrowth, but it is not known how epithelial cells coordinate their movements and morphogenesis. Here we use genetic mosaic analysis in Drosophila melanogaster to show that there are two functionally distinct classes of cells in budding tracheal branches: cells at the tip that respond directly to Branchless FGF and lead branch outgrowth, and trailing cells that receive a secondary signal to follow the lead cells and form a tube. These roles are not pre-specified; rather, there is competition between cells such that those with the highest FGF receptor activity take the lead positions, whereas those with less FGF receptor activity assume subsidiary positions and form the branch stalk. Competition appears to involve Notch-mediated lateral inhibition that prevents extra cells from assuming the lead. There may also be cooperation between budding cells, because in a mosaic epithelium, cells that cannot respond to the chemoattractant, or respond only poorly, allow other cells in the epithelium to move ahead of them.  相似文献   

17.
S Noji  T Nohno  E Koyama  K Muto  K Ohyama  Y Aoki  K Tamura  K Ohsugi  H Ide  S Taniguchi 《Nature》1991,350(6313):83-86
Retinoic acid is a putative morphogen in limb formation in the chick and other vertebrates. In chick limb formation, it is thought that retinoic acid is released from the zone of polarizing activity (ZPA) and the concentration gradient of retinoic acid formed from the posterior to the anterior provides positional cues for digit formation. Implantation of a bead containing retinoic acid at the anterior margin of the limb bud induces a mirror-image symmetrical duplication of the digit pattern similar to that observed when the ZPA is grafted into the anterior margin of the host limb bud. Also, the level of endogenous retinoic acid (25 nM on average) is higher in the posterior one third of the limb bud. We found that when the bead containing either retinoic acid or an analogue but not the ZPA, was implanted in the anterior margin of the chick limb bud, expression of the retinoic acid receptor type-beta gene was induced around the bead within 4 h. These results indicate that exogenous retinoic acid is not identical with the ZPA morphogen. As the anterior tissue exposed to retinoic acid has polarizing activity, we conclude that the primary function of exogenous retinoic acid is to induce polarizing activity in the limb bud.  相似文献   

18.
During vertebrate development, the specification of distinct cell types is thought to be controlled by inductive signals acting at different concentration thresholds. The degree of receptor activation in response to these signals is a known determinant of cell fate, but the later steps at which graded signals are converted into all-or-none distinctions in cell identity remain poorly resolved. In the ventral neural tube, motor neuron and interneuron generation depends on the graded activity of the signalling protein Sonic hedgehog (Shh). These neuronal subtypes derive from distinct progenitor cell populations that express the homeodomain proteins Nkx2.2 or Pax6 in response to graded Shh signalling. In mice lacking Pax6, progenitor cells generate neurons characteristic of exposure to greater Shh activity. However, Nkx2.2 expression expands dosally in Pax6 mutants, raising the possibility that Pax6 controls neuronal pattern indirectly. Here we provide evidence that Nkx2.2 has a primary role in ventral neuronal patterning. In Nkx2.2 mutants, Pax6 expression is unchanged but cells undergo a ventral-to-dorsal transformation in fate and generate motor neurons rather than interneurons. Thus, Nkx2.2 has an essential role in interpreting graded Shh signals and selecting neuronal identity.  相似文献   

19.
Control of tillering in rice   总被引:146,自引:0,他引:146  
Li X  Qian Q  Fu Z  Wang Y  Xiong G  Zeng D  Wang X  Liu X  Teng S  Hiroshi F  Yuan M  Luo D  Han B  Li J 《Nature》2003,422(6932):618-621
Tillering in rice (Oryza sativa L.) is an important agronomic trait for grain production, and also a model system for the study of branching in monocotyledonous plants. Rice tiller is a specialized grain-bearing branch that is formed on the unelongated basal internode and grows independently of the mother stem (culm) by means of its own adventitious roots. Rice tillering occurs in a two-stage process: the formation of an axillary bud at each leaf axil and its subsequent outgrowth. Although the morphology and histology and some mutants of rice tillering have been well described, the molecular mechanism of rice tillering remains to be elucidated. Here we report the isolation and characterization of MONOCULM 1 (MOC1), a gene that is important in the control of rice tillering. The moc1 mutant plants have only a main culm without any tillers owing to a defect in the formation of tiller buds. MOC1 encodes a putative GRAS family nuclear protein that is expressed mainly in the axillary buds and functions to initiate axillary buds and to promote their outgrowth.  相似文献   

20.
In the chick embryo, left-right asymmetric patterns of gene expression in the lateral plate mesoderm are initiated by signals located in and around Hensen's node. Here we show that Caronte (Car), a secreted protein encoded by a member of the Cerberus/Dan gene family, mediates the Sonic hedgehog (Shh)-dependent induction of left-specific genes in the lateral plate mesoderm. Car is induced by Shh and repressed by fibroblast growth factor-8 (FGF-8). Car activates the expression of Nodal by antagonizing a repressive activity of bone morphogenic proteins (BMPs). Our results define a complex network of antagonistic molecular interactions between Activin, FGF-8, Lefty-1, Nodal, BMPs and Car that cooperate to control left-right asymmetry in the chick embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号