首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
设X是复B-空间,B(X)是X上有界线性算子全体,C是复平面,F是C的一切闭子集类,我们引入一类算子,并研究它的谱理论,算子T∈B(X)称为(AC)算子,若T有性质(A)与(C),我们证明:(1)T∈B(X)是(AC)算子当且仅当对F到X的闭子空间类的同态X(·)满足下述条件:(ⅰ)(F_1∩F_2)=X(F_1)∩X(F_2);(ⅱ)X(φ)={0},X(C)=X;(ⅲ)TX(F)X(F);(ⅳ)σ(T|X(F))F;(ⅴ)对x∈X若存在解析函数x(λ):CF→X,使(λI-T)x(λ)=x,则x(λ)∈X(F),λ∈CF,(2)设T∈B(X)是(AC)算子,则对任何F∈F,有:(ⅰ)若X_T(F)≠{0},则F∩σ(T)≠φ;(ⅱ)若X_T(F)={0},则F∩σ_p(T)=φ,(3)设T∈B(X),σ(T)位于光滑Jordan曲线Γ上,又对每个z∈Γ,存在Γ邻域V上非零解析函数f(z),使 ‖f(z)R(λ,T)‖≤M_z,λ≠z,λ∈V,M_z>0,则T是(AC)算子。  相似文献   

2.
本文建立了有界线性算子的一种函数演算,并得到了这种演算的谱映射定理: 引理1 设T∈D(X)-B(X),ρ(T)≠Φ,则存在S∈B(X)及ξ∈C,λ∈σ_c(S),使T=f_(ξ,λ)(S) 定理1 设T∈B(X),则对ξ∈C,λ∈σ_c(T), 我们有: 1)σ(f_(ξ,λ)(T))=f_(ξ,λ)(σ(T)); 2)σ(f_(ξ,λ)(T)(x)=f_(ξ,λ)(σ_T(x)),x∈X 通过这种演算,可以把无界封闭线性算子表示成有界线性算子函数。利用这种函数演算和相应的谱映射定理,我们证明了无界封闭线性算子是可分解(谱)算子的充要条件是它是有界可分解(谱)算子的函数。  相似文献   

3.
在本文中,我们引入封闭可分解算子和封闭算子的谱容量的概念。并证明了如下的结果:(i)如果 T∈Q(X)(Q(X)表示复 Banach 空间 X 上有非空豫解集的封闭算子(不一定稠定)的全体)是2-可分解的,那末:(a)T 有 S(?)EP。(b)σ(T)=σ_(?)(T)。(c)对任意的开集 G((?)C),存在 Y∈SM(T)。使得(?)(d)(0) ∈SM(T)。(e)对于任意非零的 Y∈INV(T),σ(T|Y)≠(?)。(f)若 Y∈INV(T)且σ(T|Y)有界,那末 Y(?)D_T。(g)如果对于任意的 x∈D_T,σ(x,T)都是相界的,那末 T∈B(X)。(ii)如果 T∈Q(X),那末下列四条等价:(a)T 有2-谱容量;(b)T 有谱容量;(e)T2-可分解;(d)T 可分解并且,T 强可分解必须且只须 T 有强谱容量。(iii)如果 T∈Q(X)有2-谱容量 E,那末(a)suppE=σ(T)。(b)对任意的闭集 F(?)C,E(F)=X_T(F)∈SM(T)。  相似文献   

4.
讨论了一类本性正常算子的(U K)-轨道的闭包:(U K)(T)↑-。具体地讲,如果T是一个具有正常加紧形式的三角算子,且它的本性谱是完备的,对角线以上部分是紧的,得出结论:A∈L(H),A∈(U K)(T)↑-的充要条件是:(1)A∈Nor(H) K(H);(2)σ(A)增包含σ(T),σ0(A)增包含于σ0(T),σe(A)=σe(T);(3)ind(λ-A)=ind(λ-T),A↓λ∈ρs-F(A)=ρs-F(A)=ρF(A);(4)nul(λ-A)≥nul(λ-T),A↓∈ρs-F(A);(5)如果λ∈σe(A)则rankE(λ;T)。除此之外,如果T是一个双三角的本性正常算子,它的谱σ(T)=σe(T)=σ是C的一个完备集,则A∈(U K)(T)↑当且仅当A满足:(1)A∈Nor(H) K(H);(2)σ(A)增包含σ(T)是完备的;(3)σe(A)=σe(A)=σe(T),且对任意的λ∈ρs-F(A),ind(λ-A)=0。  相似文献   

5.
本文讨论算子组的联合谱的配置问题.我们所讲的联合谱是指Taylor联合谱;H、G表示Hilberr空间. 引理1 设X是—Banach空间,A=(A_1,…,A_n)■B(X)是一交换算子组,则联合谱σ(A,X)是紧集,且σ(A,X)■σ(A_1)x…xσ(A_n). 引理2 设 A∈B(H),C∈B(H,G),则存在一算子B∈B(G,H),使得σ(A)∧σ(A—BC)=θ的充要条件是对某正整数m,算子  相似文献   

6.
设X,Y是复的Banach空间,在一个上三角算子矩阵Mc=A C0 B∈B(XY)中,A∈B(X),B∈B(Y)是事先给定的,对于任意的C∈B(Y,X),Mc的左(右)Browder谱:lσb(Mc)={λ∈C:Mc)-λB (XY)},B (XY)={T∈Φ (XY):asc(T)<∞},(rσb(Mc)={λ∈C:Mc)-λ■B-(XY)},B-(XY)={T∈Φ-(XY):des(T)<∞}).文中得到lσb(Mc)(rσb(Mc))与lσb(A)∪lσb(B)|rσb(A)∪rσb(B))之间存在有趣的填洞现象,即σ*(A)∪σ*(B)=σ*(Mc)∪W.其中,W是σ*(Mc)的某些洞的并σ*∈{lσb,rσb},并找出洞W的具体位置.  相似文献   

7.
算子矩阵:单值扩张性与Browder谱   总被引:1,自引:0,他引:1  
设X,Y是给定的Banach空间,对A∈B(X),B∈B(Y),C∈B(Y,X),以MC记XY上的算子{A C/0 B}.利用局部谱理论的工具给出关于A,B成立σ*(Mc)=σ*(A)∪σ*(B)(σ*∈{αb,σw,σD})的一些充分条件,同时给出例子说明所给的充分条件不同于Djordjevic S.V.,Zguitti H.和Zhang Y.N.等人所给的充分条件.  相似文献   

8.
令H为无限维复可分的Hilbert空间,H上有界线性算子的全体为B(H).用σ(T),σab(T)和σa(T)分别表示为算子T∈B(H)的谱集,Browder本质逼近点谱和逼近点谱.称算子T∈B(H)满足(R)性质,若σa(T)σab(T)=π00(T),其中π00(T)={λ∈iso σ(T)∶0相似文献   

9.
设A∈B(ye),B∈B(k),C∈(B)((k),(ye))给定,对X∈B((ye),(k))定义Mx=(AXCB)ye( )k→ye( )(k).在一定条件下刻画集合∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx),其中σl(T)和σr(T)分别表示算子T的左谱和右谱.利用了算子矩阵的分块技巧和算子分块的几何结构.在C是闭值域的条件下,完全刻画了∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx).此刻画在缺项算子矩阵的谱的研究中是新的结果,应用该刻画可以得到若干已知结论.  相似文献   

10.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体。T∈B(H)称为是满足a Weyl定理,若σa(T)\σaw(T)=πa00(T),其中σa(T),σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱,πa00(T)={λ∈isoσa(T):0dimN(T-λI)∞}。本文通过定义新的谱集,给出了算子演算满足a Weyl定理的判定方法,同时也考虑了a Weyl定理的摄动。  相似文献   

11.
令H为无限维复可分的Hilbert空间, B(H)为H上有界线性算子的全体。 若σa(T)\σea(T)=πa00(T),称算子T∈B(H)满足a-Weyl定理,其中σa(T)、σea(T)分别表示T的逼近点谱、本质逼近点谱, πa00(T)={λ∈iso σa(T):0a-Weyl定理的新的判定方法, 并讨论相关谱集的谱映射定理。  相似文献   

12.
令H为复的无限维可分的Hilbert空间, B(H)为H上有界线性算子的全体。称算子T∈B(H)满足Weyl定理, 若σ(T)\σw(T)=π00(T), 其中σ(T)和σw(T)分别表示算子T的谱集与Weyl谱, π00(T)={λ∈iso σ(T):0相似文献   

13.
若σ(T)\σw(T)=π00(T), 则称T∈B(H)满足Weyl定理。 T∈B(H)满足Weyl定理的紧摄动: 如果对任意的紧算子K∈B(H), T+K都满足Weyl定理本文给出了一种Weyl谱的变体, 根据该变体讨论了T 3和T满足Weyl定理的紧摄动的关系。  相似文献   

14.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体, T∈B(H)称为满足(R)性质,若σa(T)\σab(T)=π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和Browder本质逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}。 利用拓扑一致降标性质,首先给出了有界线性算子满足(R)性质的充要条件; 之后通过拓扑一致降标性质,得到了算子函数满足(R)性质的判定方法; 最后,上三角算子矩阵的(R)性质得到了研究。  相似文献   

15.
设H为无限维复可分的Hilbert空间, B(H)为H上的有界线性算子的全体。 T∈B(H)称为是满足a-Weyl定理, 若σa(T)\σaw(T)=πa00(T), 其中σa(T), σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱, πa00(T)={λ∈iso σa(T):0<dim N(T-λI)<∞}。 本文通过定义新的谱集, 给出了算子演算满足a-Weyl定理的判定方法, 同时也考虑了a-Weyl定理的摄动。  相似文献   

16.
若算子T有σ(T)\σw(T)■π00(T)成立,则称T满足Browder定理,其中σ(T)和σw(T)分别表示算子T的谱和Weyl谱,且π00(T)={λ∈isoσ(T),0相似文献   

17.
设X为实或复数域F上维数大于1的Banach空间, φ:B(X)→B(X)是一个可加映射。 证明了如果存在正整数m,n使得(m+n)φ([A,B])=m[φ(A),B]+n[A,φ(B)]对所有A,B∈B(X)成立, 则存在λ∈F及在换位子为零的可加映射h:B(X)→F使得对任意A∈B(X), 有φ(A)=λA+h(A)I。  相似文献   

18.
本文主要证明:(1)如果∏σ∈∑Xσ是遗传|∑|-超仿紧空间,则X是遗传超仿紧空间当且仅当А↓F∈∑,∏σ∈FXσ以是遗传超仿紧空间.(2)设x=∏σ∈∑Xσ以是遗传可数超仿紧空间,则下列三条等价:X是遗传超仿紧空间;А↓F∈[ω]^〈ω,∏i∈FXi是遗传超仿紧空间;А↓n∈ω,∏isnXi是遗传超仿紧空间.  相似文献   

19.
文章证明了如下结果:(1)如果X=Πσ∈ΣXσ是│Σ│-仿紧空间,则X是弱subortho-紧空间当且仅当F∈[Σ]<ω,X=Πσ∈F Xσ是弱subortho-紧空间。(2)X=Πi∈ωXi是可数仿紧的,则下列三条等价:X是弱subortho-紧的;F∈[ω]<ω,∏i∈F Xi是弱subortho-紧的;n∈ω,Πi≤n Xi是弱subortho-紧的。  相似文献   

20.
本文首先将以往正抽象测度的定义中无限可加性改为半可加性,并且又给出了一个函数f,利用函数f又给出了测度的另外一个定义,使得此测度既具有以往的正测度的含义,又能够应用到模糊集合、矩阵、组合论、群论等其它方面上去。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号