首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究Frobenius双模和Gorenstein AC-平坦模之间的关系.设R和S均是环,SMR是Frobenius双模,MR是生成子.证明了:若X是Gorenstein AC-平坦R-模,则M(×)RX是Gorenstein AC-平坦S-模;若任意绝对clean ROP-模B是HomROP(M,B)(×)SM的直和...  相似文献   

2.
讨论了fann-内射模的等价刻画和基本性质,证明了○i∈ΛMi是fann-内射左R-模当且仅当每一Mi是fann-内射左R-模;若环R的每个有限生成闭左理想都是投射左R-模,则fann-内射左R-模的商模是fann-内射左R-模.同时讨论了一类特殊的fann-内射模--fann-自内射环的等价刻画及特性,证明了在左fann-自内射环里若左零化子理想l(I)是有限生成的,则δR/I是满射.最后讨论了fann-自内射环的零化子条件以及理想的自反性,证明了左fann-自内射环的有限生成理想l(I)是自反模.  相似文献   

3.
该文主要研究了Frobenius扩张上的投射余可解Gorenstein平坦模与可分Frobenius扩张上的投射余可解Gorenstein平坦维数.设环扩张R?A是Frobenius扩张,M是任意左A-模.首先证明了若AM是投射余可解Gorenstein平坦模,则RM也是投射余可解Gorenstein平坦模.其次,证明了若环扩张R?A是可分Frobenius扩张,则PGfdA(M)=PGfdR(M).  相似文献   

4.
设R是交换环,M是R-模,I是R的有限生成理想,满足∩∞n=0In=0,R^是R的I-adic完备化,M^是M的I-adic完备化.证明了若R是凝聚环,则R^是平坦R-模,且若I(∈)J(R),则R^还是忠实平坦R-模.由此证明了若R^(×)RM是有限生成(有限表现或有限生成投射)的R^-模,则M是有限生成(有限表现或有限生成投射)R-模.最后用Swan的方法证明了若R是凝聚整环,u∈J(R)是素元,∩∞n=0(un)=0,M是不可分解的有限生成投射R-模,则M/uM是不可分解的投射R/(u)-模.  相似文献   

5.
定义并研究了拟 Frobenius 余环,证明了下面几个等价条件:C 是拟 Frobeniua 余环;AC有限生成投射模,并且 l:A→˙C 是 Frobenius 扩张;CA 有限生成投射模,并且l:A→C˙是 Frobenius 扩张;忘却函子Ur:Mε→MA是拟 Frobenius 函子;(G1,U1)与(Gr,Ur) 都是拟左 Frobenius 函子偶;忘却函子Ul:εM→AM 是拟 Frobenius 函子.  相似文献   

6.
设R∝A是环的扩张。基于任伟对Gorenstein投射模和Frobenius扩张的研究,利用同调代数的方法,讨论了x-Gorenstein投射模与Frobenius扩张,并证明了当R∝A是环的Frobenius扩张且环A的左整体x-Gorenstein投射维数lxGDP(A)∞时,对任意左A-模M有:_AM是x-Gorenstein投射左A-模当且仅当潜在模_RM是■-Gorenstein投射左R-模。  相似文献   

7.
直接有限环     
证明了如下结果:1)环R是直接有限环当且仅当每个右R-满射f:R→R是单射;2)若R是右C2环,则R是直接有限环当且仅当每个右R-单射f:R→R是满射当且仅当R/J(R)是直接有限环;3)设R是左半A-bel环,则R是直接有限环;4)设R,S是两个环,RVS是(R,S)双模,则C=RV  相似文献   

8.
若每个单奇异左R-模都是JGP-内射模,则称环R为JGP-V′-环.文章主要研究了JGP-V′-环的非奇异性和半本原性,证明了如下结果:1)若R是左JGP-V′-环,则Z(RR)∩J(R)=0;2)若R是左拟duo-环、左JGP-V′-环,则R是左非奇异环;3)若R是左拟duo-环、左JGP-V′-环,则R是半本原环.  相似文献   

9.
R称为左伪morphic环,若对任意的a∈R,存在b,c∈R使得Ra=l(b),Rb=l(c),其中l(b),l(c)表示R中元素b且c的左零化子.本文主要研究R[D,C]环的伪morphic性,证明了环R[D,C]是左伪morphic的当仅当(1)D是左伪morphic环;(2)对任意的x∈C,存在y∈C使得Cx=lC(y),Dx=lD(y).受文[2]的启发,定义了左[D,C]-伪morphic元,并研究了这类元素的性质.  相似文献   

10.
主要证明了:(1)设R是左GP-V′-环,PCRZ-环,则R是双正则环;(2)设R是左GP-V′-环,PCLZ-环.若R是左(右)MI-环,则R是左(右)自内射的强正则环.  相似文献   

11.
主要刻画了在一定条件下的morphic环与其他一些环的关系,证明了如下的主要结果:1.若R是左拟duo环,且R是GP-V-环,则R是morphic环.2.若R是GP-V-环,则以下等价:(1)R是强正则环(2)R是约化的morphic环(3)R是半交换的morphic环(4)R是2-素的morphic环.  相似文献   

12.
设R为环,本文中主要证明了如下条件是等价的:(1)R是强正则环;(2)R是半交换的,广义MERT,右GP-V-环;(3)R是N-,广义MERT,右GP-V-环;(4)R是N-,约化的右pm-(GP-)内射环;(5)R是N-,右非奇异的右pm-(GP-)内射环;(6)R是N-,半本原的右pm-(GP-)内射环;(7)R是N-,半素的右pm-(GP-)内射环;(8)R是N-,正则的右pm-(GP-)内射环,因此推广了文献[1]的主要结果。  相似文献   

13.
讨论了一般Von Neumann正则环上的零因子图结构,重点刻画了其连通性和顶点性质.若R是有单位元的正则环,则其零因子图Γ(R)连通当且仅当R是直有限的;若R是无单位元的正则环,则其零因子图Γ(R)连通当且仅当R无真的单边恒等元;若R是满足|R|≥ 5的正则环,则其零因子图Γ(R)的源点和收点可以刻画为Sour(R)={a∈R|a是右可逆的但左不可逆},Sink(R)={a∈R|a是左可逆的但右不可逆}.  相似文献   

14.
环R称为左(右)SF)环,如果所有单左(右)R-模是平坦的。环R称为I-环,如果R的每个非零左理想含有非零幂等元。在本文中,我们证明了如下主要结果:(一)对于环R,如下条件是等价的:(1)R是Artin半单环;(2)R是左SF-环县R/Z(RR)是Artin单环;(3)R是左非奇异的,左SF-环县RR具有有限秩;(4)R是正交有限的I-环。(二)R是基层不为零的正则左自内射环当县仅当R是包含非奇异  相似文献   

15.
4-IF环的刻画     
引入了A-内射模和A-平坦模的定义,由此构造了A-伊环,利用平坦模和内射模给出了A-伊环的8个等价命题,得到了环R分别是伊环、A-正则环和正则环的充要条件,即:R是伊环,当且仅当只是A-伊环且A-平坦模的每个内射子模是平坦模;环R是A-正则环,当且仅当R是A-伊环且A-平坦模的子模是A-平坦模;环R是正则环,当且仅当R是A-伊环且A-平坦模的子模是平坦模。  相似文献   

16.
设R是一个环.在文献(M.Y.Wang,G.Zhao.Acta Mathematica Sinica,2005,21:1451-1458.)中,如果从环R的任意右理想到R自身的每个态射都能被表示成为R中的某个元素左乘形式,那么该环R被称为右极大-内射环.给出了V-环、半单环的等价刻划;并证明了如果一个凝聚-SF环R是余挠的,那么R是极大-内射的;以及表明了极大-内射环的存在性:极大-内射生成子的自同态环是极大-内射的.最后,证明了一个右极大-内射左完全环R是quasi-Frobenius环当且仅当它满足左W-条件.  相似文献   

17.
设R是有单位元的环.我们称R为循环环,如果加群(R,+)是循环群;称R为U-循环群,如果R的全体单位作成的乘群U(R)是循环群;称R为双循环环,如果(R,+)和U(R)都是循环群.本文利用(R,+)与U(R)的一些性质讨论环R的性质和结构,所得主要结果如下:(1)若R是Artin半单环,则U(R)是有限的当且仅当R是有限的.(2)域F是U-循环环当且仅当F是有限的.(3)若R是域F上所有n阶上三角形矩阵作成的环,则R是U-循环环当且仅当n=2和F≌Z2.(4)若R是无限环,则R是双循环环当且仅当R≌Z.(5)设R是有限环且|R|=n>1,则R是双循环环当且仅当R≌Zn,n为2,4,pk,2pk,其中p为任意奇素数,k为任意正整数.  相似文献   

18.
首先, 证明含单位元的结合环R是左广义弱零插入(GWZI)环当且仅当对任意的a,b∈R, ab=0蕴含存在正整数n, 使得anRb=0; 其次, 利用矩阵分块方法证明环R是左GWZI环当且仅当对任意的整数n≥2, Sn(R)是左GWZI环.  相似文献   

19.
R称为左广义morphic环,若对每个a∈R,存在b,c∈R使得l(a)=Rb,l(b)=Rc。R称为左伪morphic环,若对任意的a∈R,存在b,c∈R使得Ra=l(b),Rb=l(c),其中l(a),l(b),l(c)表示R中元素a,b,c的左零化子。本文主要研究广义morphic环和伪morphic环的部分性质,通过例子说明某些结论的逆命题不成立。反例,设R是环,n≥0,R[x]/(xn+1)是左广义morphic环,则R是左广义morphic环,反之不成立。  相似文献   

20.
关于Morphic环的推广   总被引:2,自引:1,他引:2  
文中主要给出了YJ-morphic环的定义.说明了以下主要结果:每一个左YJ-morphic环是右YJ-内射环;每一个右YJ-morphic的Bear环是右YJ-pp环;若R是左YJ-morphic环,则J(R)=Z(RR),Soc(RR)(∈)Soc(RR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号