首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting from the quaternary Cu47Ti34Zr11Ni8 alloy, the compositional dependence of thermal and elastic properties of Cu-Ti-Zr-Ni alloys was systematically investigated. Quaternary Cu-Ti-Zr-Ni alloys can be cast directly from the melt into copper molds to form fully amorphous strips or rods with the thickness of 3–6 mm. The evidence of the amorphous nature of the cast rods was provided by X-ray spectra. The measured glass transition temperature (Tg) and crystallization temperature (Tx) were obtained for the alloys using differential scanning calorimetry (DSC) at the heating rate of 20 K/s. In the results, the differences between the glass temperature and the crystallization temperature (ΔTx=Tx-Tg) are measured with values ranging up to 33–55 K. The reduced glass transition temperature (Trg), which is the ratio of the glass temperature to the liquidus temperature (Tl), is often used as an indication of the glass-forming ability of metallic alloys. For the present Cu-Ti-Zr-Ni alloys, this ratio is typically in the range of 0.5838–0.5959, characteristic of metallic alloys with good glass-forming ability. The elastic constants for several selected alloys were measured using ultrasonic methods. The values of the elastic shear modulus, bulk modulus, and Poisson’s ratio were also given.  相似文献   

2.
A series of Er-Al-Co bulk metallic glasses (BMGs) have been prepared by the copper mold casting method. The glass forming ability and magnetocaloric effect (MCE) for these alloys have been investigated. The second-order magnetic transition from para-magnetic to ferromagnetic states takes place at about 9 K. These BMGs exhibit excellent MCE because of their large effective magneton number; Er56Al24Co20 BMG has a maximum entropy change and refrigeration capacity of 16.06 J kg-1 K-1 and 546 J kg-1,respectively,under the field of 50 kOe (10 kOe=795.775 kA/m) indicating that these BMGs are potential candidate magnetic materials for hydrogen liquefaction.  相似文献   

3.
A series of Er-Al-Co bulk metallic glasses (BMGs) have been prepared by the copper mold casting method. The glass forming ability and magnetocaloric effect (MCE) for these alloys have been investigated. The second-order magnetic transition from para-magnetic to ferromagnetic states takes place at about 9 K. These BMGs exhibit excellent MCE because of their large effective magneton number; Er56Al24Co20 BMG has a maximum entropy change and refrigeration capacity of 16.06 J kg-1 K-1 and 546 J kg-1,respectively...  相似文献   

4.
ZnO/Ag/Glass films were prepared by a DC magnetron sputtering system,which exhibit both excellent properties of high conductivity and high transparency.Moreover,an enhancement of transmission of ZnO films was observed after brought into contact to a silver layer,but the understanding of experimental findings for the enhancement of transmission was insufficient.Therefore,the first-principles simulations of electrical and optical properties were utilized using the density functional theory with local-densi...  相似文献   

5.
The effect of yttrium addition on the glass-forming ability(GFA) and mechanical properties of the Zr-based (Zr_(0.525)Al_(0.1)Ti_(0.05)Cu_(0.179)Ni_(0.146))_(100-x)Y_x and(Zr_(0.55)Al_(0.15)Ni_(0.1)Cu_(0.2))_(100-x)Y_x(x=0,0.2,0.4 0.6,1,2) alloys was studied.Micro-alloying of 0.6%yttrium enhances the room temperature ductility as well as the GFA of the Zr-based alloys.The mechanism of enhancing the GFA and room temperature ductility was analyzed.It is indicated that proper yttrium addition stabilizes the...  相似文献   

6.
The structural behavior of binary Cu50Zr50 and ternary Cu50Zr45Ti5 bulk metallic glasses (BMGs) under applied stress was investigated by means of in-situ high energy X-ray synchrotron diffraction. The components of the strain tensors were determined from the shifts of the maxima of the atomic pair correlation functions (PDF) in real space. The anisotropic atomic reorientation in the first-nearest-neighbor shell versus stress suggests structural rearrangements in short-range order. Within the plastic deformation range the overall strain of the metallic glass is equal to the yield strain. After unloading,the atomic structure returns to the stress-free state,and the short-range order is identical to that of the undeformed state. Plastic deformation,however,leads to localized shear bands whose contribution to the volume averaged diffraction pattern is too weak to be detected. A concordant region evidenced by the anisotropic component is activated to counterbalance the stress change due to the atomic bond reorientation in the first-nearest-neighbor shell. The size of the concordant region is an important factor dominating the yield strength and the plastic strain ability of the BMGs.  相似文献   

7.
The structural behavior of binary Cu50Zr50 and ternary Cu50Zr45Ti5 bulk metallic glasses (BMGs) under applied stress was investigated by means of in-situ high energy X-ray synchrotron diffraction. The components of the strain tensors were determined from the shifts of the maxima of the atomic pair correlation functions (PDF) in real space. The anisotropic atomic reorientation in the first-nearest-neighbor shell versus stress suggests structural rearrangements in short-range order. Within the plastic deforma...  相似文献   

8.
《科学通报(英文版)》2011,56(35):3894-3894
Bulk metallic glasses (BMGs) are a new class of metallic materials possessing a unique microstructure without long-rangeorder, in contrast to crystalline solids which have periodic arrangements of atoms in space. Since the successful production ofbulk metallic glasses by copper mold casting around the end of the 1980s, great enthusiasm in the study on this new class of  相似文献   

9.
Recently, bulk metallic glasses (BMGs) have at- tracted a great deal of attention due to their extremely high strength, improved wear resistance and excellent corrosion resistance[1-7]. However, it is known that their structural applications are currently…  相似文献   

10.
Bulk metallic glass (BMG) formation was explored in the Fe-B-Si-Nb alloy system though combined use of the atomic cluster line approach and the minor alloying strategy. The basic ternary compositions in the Fe-B-Si system were determined by the intersection points of two cluster lines, namely, Fe-B cluster to Si and Fe-Si cluster to B. 3at%–4at% Nb was added to the quaternary Fe-B-Si-Nb alloy. The casting experiments revealed that good glass-forming ability (GFA) occurred at the (Fe73.4Si8.2B18.4)96Nb4 composition, and 3-mm diameter BMG samples were made. The glass transition temperature (Tg), crystallization temperature (Tx), and supercooled liquid region (ΔTx=Tx-Tg) of this BMG were measured to be 866, 889, and 23 K, respectively. The BMG shows a high Vickers hardness of about Hv 1164, a Young’s modulus of 180 GPa, and a good corrosion resistance in the solutions of 1 mol/L HCl and 3wt% NaCl.  相似文献   

11.
Ni-and Cu-free Zr-Al-Co-Nb glassy alloys with different Nb and Co contents were synthesized by melt spinning and copper mold casting.The effects of Nb addition to partially replace Co in the Zr55Al20Co25 glassy alloy on the glass-forming ability,thermal properties,in-vitro biocorrosion behavior and surface wettability of the metallic glasses were investigated.Although addition of Nb up to 5 at.% slightly decreased the supercooled liquid region and the glass-forming ability(GFA),the alloys could be casted in a bulk glassy rod form with diameters up to 3mm.The Zr-Al-Co-Nb glassy alloys were spontaneously passivated with low passive current densities in phosphate buffered saline and Hanks’ solution.Substitution of "toxic" Co by Nb is effective in improved the corrosion resistance of the Zr-Al-Co glassy alloy.Water contact angle measurements showed that Nb addition increased the hydrophilicity of the glassy alloys,which may enhance cell adhesion of the alloys in biomedical applications.  相似文献   

12.
研究了Zr-Al-Ni-Cu块体非晶合金中Zr元素含量变化对合金力学性能的影响.利用X射线衍射仪和透射电子显微镜表征合金的结构;利用差示扫描量热仪研究非晶合金的热学性能;采用万能试验机测试材料的压缩力学性能;采用扫描电子显微镜观察压缩变形后试样的剪切带形貌.研究结果表明:随着Zr元素的摩尔分数从66%增加到70%,压缩塑性变形量从3%提高到11%,合金表面的剪切带密度明显增大,非晶合金的塑性变形能力提高.随着Zr元素含量的增加,非晶合金的弛豫热明显增大,自由体积含量增多,有利于多重剪切带的形成,从而增大了合金的塑性变形能力.  相似文献   

13.
Ni-Hf是一类重要的二元非晶形成体系,但其非晶形成能力较弱,最佳非晶成分尚不明确.本文利用团簇加连接原子模型,首先解析了二元深共晶点Ni65Hf35对应共晶相Ni7Hf3和Ni10Hf7的团簇结构,获得了可代表各自结构特征的主团簇;随后依据非晶合金的通用团簇式[团簇](连接原子)1或3,设计出若干可能具有高非晶形成能力的合金成分.实验结果表明,急冷甩带后只有Ni71.43Hf28.57和Ni68.75Hf31.25两个成分点形成完全非晶,其中后者成分由团簇成分式[Ni-Ni7Hf5]Ni3描述,并具有最高的热稳定性(877K)和最低的液相线温度Tl(1482K),被认为是Ni-Hf系中高非晶形成能力的成分点,其位于Ni65Hf35共晶点的富Ni侧,靠近共晶相Ni7Hf3.  相似文献   

14.
(Mg66.2Zn28.8Ca5)100?xCux (at%, x = 0, 1, 3, and 5) bulk metallic glasses (BMGs) of 2 mm in diameter were prepared by the conventional copper mold injection casting method. Besides, the influence of Cu content on the microstructure, thermal stability, mechanical properties, and corrosion behavior of Mg-Zn-Ca BMGs was investigated. It is found that the addition of Cu decreases the glass-forming ability of Mg-Zn-Ca BMGs. Crystalline phases are precipitated at a higher Cu content, larger than 3at%. The compressive fracture strength of Mg-Zn-Ca BMGs is enhanced by the addition of Cu. With the formation of in-situ composites, the compressive strength of the Mg-Zn-Ca alloy with 3at% Cu reaches 979 MPa, which is the highest strength among the Mg-Zn-Ca alloys. Furthermore, the addition of Cu also results in the increase of corrosion potential and the decrease of corrosion current density in Mg-Zn-Ca BMGs, thereby delaying their biodegradability.  相似文献   

15.
Four Zr-Cu-Fe-Al-based bulk metallic glasses (BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr-Cu-Fe-Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316L steel in phosphate buffer solution (PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.  相似文献   

16.
The Zr62.55Cu17.55Ni9.9Al10 bulk metallic glass (BMG) was prepared by using copper-mold suction-casting. X-ray diffraction and differential scanning calorimetry were utilized to determine its structure and thermal stability. Uniaxial compression and Rockwell indentation tests were adopted to study the plastic deformation behavior at room temperature. The results show that the glass transition temperature and the onset temperature of exothermic reaction of the BMG are 651.5 and 748 K, respectively. During the compression test, the BMGs undergo an engineering strain of about 2.5%, i.e., true strain of 2.8%, and then fracture. The BMGs deform via the formation and propagation of shear bands. Under indentation loading, the BMGs deform through the formation of radiation-like and circular shear bands. The circular shear bands form earlier than the radiation-like ones. The formation mechanism of shear bands in the BMGs was analyzed and discussed.  相似文献   

17.
In traditional view,atomic packing is random in glasses made of metallic elements with non-directional interactions as the glass-forming liquid needs to be excited to remain in liquid state before being cooled sufficiently fast to a glass. Locally ordered packing however is possible if certain conditions are favorable,such as a strong bonding between elements,or low configuration energy of a cluster of atoms as suggested by Frank. In alloy systems made of different metallic elements,we show that Frank’s criterion alone does not necessarily lead to certain specific local ordered packing or cluster formation such as icosahedral packing. In this context,we revisit the issue of atomic packing and cluster formation,and show that an alloy system with fairly random liquid configuration could be sufficient to produce a variety of noticeable locally ordered packing with low energy,albeit largely statistical in nature. Therefore,we emphasize the importance of the system parameters such as the atomic size,alloy concentration,and interaction potential in their collective contribution to local atomic packing.  相似文献   

18.
Co48-xFexCr15Mo14C15B6Er2 (x = 2.5 and 5) bulk metallic glasses (BMGs) with critical size (dc) up to 15 mm in diameter were synthesized by copper mold casting. Co43Fe5Cr15Mo14C15B6Er2 BMG has a wide supercooled liquid region (84 K) and ultrahigh fracture strength exceeding 5000 MPa,which is the highest value for reported metallic glasses with dc exceeding 1 cm. Furthermore,the Poisson ratio,Young modulus,shear modulus and bulk modulus of this alloy were evaluated to be 0.31,217 GPa,82 GPa and 214 GPa,respectively. The ideal configurational entropy of Co48-xFexCr15Mo14C15B6Er2 (x = 0 and 5) has been calculated. The introduction of the similar element Fe in the Fe-free Co-Cr-Mo-C-B-Er alloy will be beneficial to increasing the ideal config-urational entropy and depressing the critical cooling rate to achieve greater glass-forming ability. The combination of superior glass-forming ability and ultrahigh fracture strength makes the present Co48-xFexCr15Mo14C15B6Er2 (x = 2.5 and 5) BMGs promising candidates as advanced structural materials.  相似文献   

19.
The effect of cooling rate on plastic deformation of Zr-based bulk metallic glasses has been studied.The specimens with the diameters of 3 mm,4 mm and 6 mm cut from the same ladder-shaped Zr55Al10Ni5Cu...  相似文献   

20.
Oxide films formed on the surfaces of Fe-based bulk metallic glasses in the temperature range between 373 K and 573 K were characterized and their effects on the corrosion behaviors were investigated by microstructural and electrochemical analysis. The oxide film formed at 573 K is iron-rich oxide and it exhibits an n-type semiconductor at a higher potential than 0.35 V and a p-type semiconductor at a lower potential than 0.35 V. Capacitance measurements show that the donor density decreases with the increase in oxidation temperature, while the thickness of the space charge layer increases with the oxidation temperature rising. The result of immersion tests shows that the mass loss rate increases with the oxidation temperature rising. Therefore, the correlation between microstructure and corrosion resistance needs to be proposed because the corrosion resistance is deteriorated with the development of the oxide films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号