首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究地震作用下桥上CRTSⅢ型板式无砟轨道系统的动力响应,以11×32 m简支梁桥为例,基于有限元法和梁-轨-板相互作用原理,建立了桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型,分析了不同地震波及地震动强度对系统受力变形的影响.研究结果表明:与El-Centro波相比,天津宁河波对系统动力响应有显著的增强效应,钢轨应力曲线均关于跨中呈反对称分布,最大拉压应力为206.5 MPa;各层间构件受力变形曲线均关于桥梁纵向呈轴对称分布,钢轨位移线形平滑,在中跨桥右侧1/3处达到最大,为100.6 mm;轨道板、自密实混凝土层、底座板位移随桥跨数的增加呈阶梯增减变化,最大值出现于第6跨桥,轨板相对位移在最右侧梁缝处达到最大,各结构的纵向力较小;随着地震动强度的提高,系统受力变形显著增加;与设计地震相比,罕遇地震下轨板相对位移最大值增加了146.9%,可达85.5 mm,极易导致轨下胶垫窜出引发扣件失效;左侧桥台与相邻固定支座墩顶最大位移差值显著,为96.6 mm,增加了落梁风险;对于地震区桥上无缝线路,需加强对薄弱位置处轨板相对位移以及相邻墩/台顶位移的关注.  相似文献   

2.
为研究温度梯度荷载作用下多跨简支梁桥上CRTS Ⅱ型板受力变形问题,基于有限元法建立了多跨简支梁桥上CRTS Ⅱ型板式无砟轨道无缝线路(Continuous Welded Rail,CWR)空间精细化有限元模型,分析了竖向、横向温度梯度荷载作用下轨道、桥梁结构纵向受力与变形特性.研究结果表明:竖向温梯荷载作用下,钢轨在桥梁两端的主端刺位置伸缩力与位移达到最大值;轨道板出现翘曲应力,其上下表面应力差随温度梯度增大而增大,轨道板竖向温度梯度为90℃/m时,上下表面应力差最大值较50℃/m时增加了44%.双向温梯荷载作用下,向阳侧桥梁纵向位移明显高于背阴侧,钢轨伸缩力略高于背阴侧;随着横向温度梯度的增大,阴阳两侧结构纵向位移差、相对位移差和应力差均呈现逐渐增大趋势.在高温差地区需重点关注轨道板因上下表面应力差引起的翘曲变形问题.研究成果可为桥上CRTS Ⅱ型板式无砟轨道无缝线路的设计、施工和维护提供理论依据.  相似文献   

3.
无砟桥上无缝交叉渡线力学特性的影响因素   总被引:2,自引:0,他引:2  
基于有限元方法,以60 kg/m钢轨、12号固定辙叉、4 m间距无砟轨道交叉渡线为例,建立了无砟桥上无缝交叉渡线纵横向耦合的温度力及位移计算模型.主要研究了桥梁及钢轨的温度变化幅度、桥墩墩顶纵向水平刚度、桥梁形式及支座布置形式等因素对桥上无缝交叉渡线力学特性的影响,并对今后无砟桥上无缝交叉渡线的设计提出了建议.  相似文献   

4.
为研究多跨简支梁桥上不同无砟轨道对应无缝线路的受力特点,基于梁轨相互作用原理推导了可以考虑非线性阻力的多跨简支梁梁轨相互作用公式,并与有限元法进行了对比.分别建立了32 m标准跨度简支梁桥上不同无砟轨道模型,分析对比了实测温度荷载与制挠力耦合作用下各无砟轨道对应的无缝线路受力规律,同时探讨了简支梁跨数墩顶刚度以及扣件阻力等结构参数的影响.结果表明:对于32 m标准跨度简支梁,随着简支梁跨数的增加,钢轨附加应力最大值趋于稳定,且稳定时的最大值均小于规范限值,对于铺设无砟轨道的简支梁桥,其跨数不受钢轨附加应力限制;对于单元板式及双块式无砟轨道,当墩顶纵向刚度大于2 000 kN/cm时,墩顶刚度的变化对其钢轨附加应力的影响很小;多跨简支梁桥上无砟轨道不建议采用小阻力扣件.  相似文献   

5.
为分析某刚构桥两端CRTSⅠ型框架型板式无砟轨道无缝线路扣件复合垫板窜出、半圆形凸形挡台与底座连接处拉裂以及半圆形凸形挡台周围填充树脂与轨道板产生较大离缝等病害,基于桥上无砟轨道无缝线路受力特点,采用有限元的方法建立线-板-桥-墩一体化计算模型,分析树脂强度、桥上铺设小阻力扣件以及设置钢轨伸缩调节器对轨道结构受力和变形的影响。结果表明:刚构桥两端扣件复合垫板窜出主要是由于采用小阻力扣件时,桥梁两端位置处的钢轨与轨道板的相对位移过大所致;半圆形凸形挡台与底座连接处拉裂、树脂大离缝等病害主要是因为在扣件纵向阻力过大以及树脂层的强度未达到设计强度,钢轨与桥梁温度变化使凸形挡台周围树脂层受力过大所致;桥上采用小阻力扣件时应该研究其铺设范围以期达到既能降低钢轨伸缩附加力又不显著增加钢轨与轨道板的相对位移。  相似文献   

6.
在大跨度连续梁上铺设CRTS Ⅰ型板式无砟轨道结构,并且考虑高速车辆的动力作用之后,其梁轨相互作用机理更加复杂.基于ABAQUS软件,建立高速铁路长大桥梁CRTSⅠ型板式无砟轨道无缝线路纵横垂向空间耦合动力学模型,可以对高速条件下高速车辆、无缝线路钢轨、无砟轨道和长大桥梁各细部结构的动力学特性进行研究.经计算和检算可知,在铺设CRTS Ⅰ型板式无砟轨道无缝线路的(80+ 128+ 80)m连续梁上运行时速350 km的高速车辆,其各项动力学计算结果均满足动力学检算标准.  相似文献   

7.
CRTSⅡ型板式无砟轨道具有施工精度高、运营速度高、座车舒适度高的特点,在我国高速铁路建设上得到大规模推广应用高速铁路客运专线为了大量减少工后不均匀沉降存在的危害,在线路设计上除了隧道便是大量的使用桥梁设计,而底座板是CRTSⅡ型板式无砟轨道中的基础工序及工程量最大的工序,而底座板的张拉又是CRTSⅡ型板式无砟轨道中关键工序,它的成功与否关系着无碴轨道的稳定和列车的运输安全,因此,底座板施工中张拉环节非常重要,应加强质量控制,以确保底座板张拉质量符合设计要求  相似文献   

8.
建立连续梁桥上CRTSⅡ型板式无砟轨道纵向力计算模型和求解方法,分析滑动层摩擦系数、底座板伸缩刚度和扣件纵向阻力对大跨度连续梁桥上伸缩附加力的影响.结果表明:降低滑动层摩擦系数和扣件纵向阻力可以减小钢轨和底座板伸缩附加力,增加底座板伸缩刚度可以减小钢轨和桥梁墩台伸缩附加力.  相似文献   

9.
为简化大跨连续梁桥上CRTSⅢ型板式无砟轨道无缝线路纵向力计算模型,基于原有计算模型、连续梁桥受力特点及梁-板-轨相互作用原理提出简化的等截面计算模型,并将新的模型与原变截面模型分别在伸缩力、制动力及挠曲力工况下的计算结果进行对比分析.结果表明:简化模型与原模型在伸缩力和制动力工况下各结构纵向力与位移变化趋势基本一致,计算结果误差均不到1%,满足工程需要;简化模型与原模型挠曲力工况下计算结果相差很大,挠曲力工况下须根据连续梁实际截面参数进行建模计算;各轨道及桥梁结构挠曲受力与变形均很小且一般不作为设计检算指标.提出的简化模型其建模速度和计算效率可提高20%~40%.  相似文献   

10.
高速铁路博格纵连板桥上无砟轨道纵向力学特性   总被引:10,自引:0,他引:10  
为研究高速铁路博格纵连板桥上无砟轨道纵向力学特性,建立纵向荷载作用下高速铁路博格纵连板桥上无砟轨道非线性有限元空间力学模型,与德国博格公司计算结果进行对比验证.以10跨32 m博格纵连板桥上无砟轨道为例,用所建立的力学模型,对伸缩荷载、制动荷载、断轨荷载、断板荷载工况下博格纵连板桥上无砟轨道空间力学特性进行研究,并与单元板式桥上无砟轨道计算结果进行对比.研究结果表明:与单元板式无砟轨道相比,博格纵连板桥上无砟轨道可以大大降低伸缩、制动、断轨荷载工况下作用在钢轨及墩台顶的纵向作用力,有利于采用大阻力扣件并在全线铺设跨区间无缝线路,保证列车高速安全运行,并降低高速铁路桥梁墩台造价,但博格纵连板桥上无砟轨道板折断后,将在无砟轨道各部件间引起较大的纵向作用力,因此,必须保证无砟轨道板施工质量.  相似文献   

11.
针对青藏铁路不冻泉地区桥上无缝线路梁轨纵向位移开展试验研究与理论分析。研究适合青藏高原恶劣气候环境的梁轨纵向位移自动采集存储系统,对青藏铁路不冻泉地区双片式T型混凝土简支梁桥的梁端纵向位移和梁轨纵向相对位移分别进行为期214 d和134 d的连续测试。对测试数据进行理论分析。研究结果表明:测试期间内,该地区梁体最大日温差为9.28℃;现行《铁路轨道设计规范》中关于有砟轨道混凝土梁体日温差的取值以及桥上无缝线路伸缩力与位移的计算方法适用于该地区的桥上无缝线路设计。  相似文献   

12.
为了研究在近断层脉冲型地震作用下高速铁路桥梁-轨道系统的动力响应规律,针对高速铁路线上最常用的简支梁形式结构,以某8×32.7 m高速铁路简支箱梁桥为例.建立了考虑简支梁与CRTS Ⅰ型板式无砟轨道之间相互作用的桥梁-轨道模型,讨论了具有破裂前方脉冲、滑冲脉冲、无脉冲型近断层地震动对桥梁-轨道系统的影响及扣件阻力改变时桥梁-轨道系统动力响应的变化.结果表明:三种脉冲类型地震动作用下钢轨的受力和变形规律保持一致,脉冲型地震动较无脉冲型地震动增加了约20%钢轨应力和位移.相对于轨道系统,桥墩对脉冲类型更为敏感,在破裂前方脉冲和滑冲脉冲地震作用下,桥墩的墩顶最大位移比无脉冲地震动分别增大了106.6%和148.6%,墩底弯矩和剪力也有明显增大,在进行高速铁路桥梁抗震设计时应考虑脉冲类型对桥梁结构的影响.扣件纵向阻力从5 kN/组增大到15 kN/组时,墩顶最大位移降低了10%,但钢轨应力和位移峰值约为原来的2倍.  相似文献   

13.
为分析有轨电车嵌入式轨道桥上无缝线路梁轨相互作用机理并获得最优参数组合,根据梁轨相互作用原理,建立了多跨简支梁桥上嵌入式轨道桥上无缝线路力学分析模型,采用正交试验方法研究钢轨类型、高分子材料纵向阻力、桥墩纵向刚度、桥台纵向刚度和桥梁跨数这5种因素对嵌入式轨道桥上无缝线路力学特性的影响.研究结果表明:采用小阻力高分子材料可明显减小钢轨附加作用力,但轨板相对位移和断缝值有较大增长;当高分子材料纵向阻力约为5.0×10~6 N/m时,轨板相对位移达到限值,高分子材料产生拉裂破坏;最佳简支梁桥上有轨电车嵌入式轨道无缝线路设计方案为钢轨类型60R2槽型轨、高分子材料纵向阻力2.0×10~7 N/m、桥墩纵向刚度3.0×10~7 N/m、桥台纵向刚度2.0×10~8 N/m,桥梁跨数根据实际工程而定.  相似文献   

14.
以土质路基上CRTSⅠ型板式无砟轨道结构作为研究对象,采用有限元软件ANSYS建立了土质路基板式无砟轨道力学实体模型,对CRTSⅠ型板式无砟轨道进行温度力分析,确定轨道板板面和板底温度相差±10℃时,确定平板式轨道板所受的最大拉应力、最大位移,以及温度荷载对CA砂浆、混凝土支承层、土质路基的影响程度,最终得出轨道板应该采用双向配筋及在计算中可以不考虑温度荷载对CA砂浆层的受力影响等结论。  相似文献   

15.
为研究纵连板式无砟轨道-桥梁整体的动力性能,对桥上CRTSⅡ型无砟轨道建立了多测点测量系统,详细观测了CRTSⅡ型轨道工作时各结构的响应特征,对各结构的横向加速度、竖向加速度、竖向位移以及梁体的自振频率、阻尼比、动力系数进行了统计分析.结果表明:CRTSⅡ型无砟轨道系统的竖向总减振率可达90%以上,行车振动传至桥面板时,最大竖向加速度幅值为3.93 m/s~2,最大竖向位移幅值为0.131 4 mm,满足相关规范要求;行车振动对邻线影响较小,且影响主要集中在简支梁固定支座端;车致振动响应基本与行车速度呈正相关;在特定速度附近,部分结构可能产生与轨道系统整体不同步的振动模式,存在离缝与损坏的隐患;在CRTSⅡ型无砟轨道系统下,简支梁一阶竖向自振频率约为7.27 Hz,略大于裸梁理论值.  相似文献   

16.
为研究冬季高速铁路桥上CRTSⅡ型板式无砟轨道温度分布规律,制作无砟轨道-预应力混凝土简支箱梁结构1?4缩尺试验模型,开展冬季低温气候无阳光直射环境下的温度分布试验,研究CRTSⅡ型板式无砟轨道结构的温度变化规律,提出该型无砟轨道在高速铁路桥上的温度分布形式.研究结果表明:1)寒冷季节高速铁路桥上CRTSⅡ型板式无砟轨...  相似文献   

17.
李克夫 《甘肃科技》2012,28(2):103-105
结合石武客运专线铁路无砟轨道的施工,主要阐述了桥梁地段CRTSⅡ型板式无砟轨道的施工方法,总结了无砟轨道施工中容易出现的质量通病并剖析原因.根据目前现场作业水平,提出了简便易行的防治方法,为今后CRTSⅡ型板式无砟轨道施工提供参考.  相似文献   

18.
为了分析京沪高速铁路CRTSⅡ型板式无砟轨道结构的动力响应,通过建立无砟轨道结构-下部基础结构动力有限元分析模型,得到了结构前10阶模态和不同列车速度下无砟轨道结构的动力特性.分析结果表明:桥梁上CRTSⅡ型板式无砟轨道结构的自振频率都比规范的限值大,说明桥梁有足够的刚度保证列车行驶的安全性和舒适性;桥梁上板式无砟轨道结构的前10阶振型中大部分振型表现为横向扭转,桥梁结构横向刚度相对较小,在实际的高速铁路桥梁结构中应注意桥梁的横向稳定性;无砟轨道结构各个构件的竖向位移、竖向加速度、板底水平拉应力及CA砂浆层竖向压应力均随列车速度的增大而逐渐增大;线下基础结构顶面竖向压应力存在转折变化点.  相似文献   

19.
为降低持续高温对轨道结构的影响,分析反射隔热涂层在桥上CRTSⅡ型板式无砟轨道结构上的适用性。对比分析反射隔热涂层涂刷前后及不同涂刷次序下桥梁–轨道系统的纵向受力特性。研究结果表明:全桥涂刷反射隔热涂层对梁体的影响可以忽略;在最不利条件下施工时,涂刷反射隔热涂层处底座板的伸缩压力增大200~400 kN,但远小于轨道板伸缩压力的降低幅度;涂刷反射隔热涂层后,轨道板伸缩压力降低约1 800 kN,有效降低了持续高温情况下轨道板上拱风险。在铁路双线桥CRTSⅡ型板式无砟轨道结构上涂刷反射隔热涂层时,优先考虑轨道板受力即可;双线同时涂刷对轨道结构受力最有利。  相似文献   

20.
采用非线性弹簧模拟无缝线路纵向阻力,用带刚臂的梁单元模拟梁体,以黄韩侯铁路线上某156 m简支钢桁梁桥为例,分析相邻桥跨结构对大跨度简支钢桁梁桥上无缝线路纵向力分布规律的影响,提出相关参数的取值建议.研究表明:分析大跨简支钢桁梁桥上无缝线路纵向力时,两侧的多跨简支梁在下部结构纵向刚度相差较小的情况下可按6跨进行简化;与32 m标准跨度相比,相邻简支梁跨度为24 m时固定端伸缩力降低了9%,40 m时固定端伸缩力增大了7%;相邻桥跨为大跨连续梁时,钢桁梁固定端伸缩力增大了2.2倍,全桥伸缩压应力最大值增大了12%;在连续梁与钢桁梁之间布置1跨或2跨简支梁可大幅降低钢桁梁固定端的钢轨应力;在钢桁梁桥上设置小阻力扣件可使伸缩工况下钢桁梁的钢轨应力最大值和桥墩水平力显著减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号