首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为研究高速列车在柔性轮对条件下通过道岔时的动力响应,采用刚柔耦合动力学仿真方法,基于CRH380高速列车模型建立柔性轮对结构条件下的车辆—道岔刚柔耦合动力学模型。以柔性轮对高速列车模型为研究对象,通过18号高速道岔,分析轮对柔性与全刚体结构条件下的车辆模型的安全性、轮轨动态相互作用、车体振动加速度及轮轨接触位置分布指标。仿真结果表明,柔性轮对高速列车模型对车辆的轮轨动态相互作用影响较大,对安全性、车体振动加速度及轮轨接触位置分布等动力学指标影响较小。  相似文献   

2.
受电弓作为高速列车上不可或缺的部件,其结构特性直接影响高速列车整车气动性能。采用数值仿真方法,基于三维稳态SST k-ω模型,分析高速受电弓不同安装形式对高速列车气动性能的影响以及各节车辆气动阻力的变化规律,并进一步研究其横风环境适应性。研究结果表明:当高速列车在明线运行时,高速受电弓不同安装形式对整车气动性能影响较小,但受电弓所在车辆的气动阻力变化较大;与闭口-升前弓工况相比,受电弓开口-升前弓时整车气动阻力减小2.10%,其中第6节车气动阻力减小6.06%;在横风条件下,受电弓开口-升前弓时整车横风稳定性能较优,与开口-升后弓工况相比,整车横向力与倾覆力矩分别降低2.52%和3.48%,其中第6节车横向力和倾覆力矩分别减少11.13%与18.50%。因此,在明线有无横风条件下,受电弓安装形式为开口-升前弓的气动性能均最优,且升前弓能改善受电弓后区域的流场结构,从而达到改善整车气动性能的目的。  相似文献   

3.
以CRH380B型动车组为实例,结合实际中常见的抗蛇行减振器故障,基于车辆动力学理论,利用动力学仿真软件SIMPACK建立动力学模型,通过改变抗蛇行减振器阻尼特性来模拟不同故障类型,从而对车辆进行动力学研究.结果表明:当抗蛇行减振器故障后的剩余阻尼力在标准阻尼力50%以下时,对车体平稳性、稳定性、曲线通过性能均有很大影响.其中当抗蛇行减振器剩余阻尼力为标准力值的50%时,车体垂向和横向平稳性指标分别达到了1.85和2.20,脱轨系数达到了0.45,非线性临界速度降低到了271km/h.得出抗蛇行减振器的最佳阻尼特性:当卸荷速度为0.03m/s,卸荷力为8~9kN时,车辆各动力学性能达到相对最优状态.  相似文献   

4.
车轮扁疤是铁道车辆车轮踏面的缺陷形式之一,对轮轨动力和运用安全有明显的影响.本文建立了弹性车辆系统动力学模型,且将车轮扁疤伤损考虑为车轮轮径变化.利用数值仿真,研究了车轮扁疤伤损对高速列车轮轨冲击力、轮对振动及轮轨接触性能等的影响,并结合列车运行安全性指标得到了不同速度等级下车轮扁疤长度安全限值.结果表明,弹性车辆系统模型可以准确体现轮对旋转运动特征.车轮扁疤伤损对轮轨系统垂向和横向均产生冲击作用,对轮轨系统垂向冲击作用尤为明显,将显著增大轮对旋转振动频率及其倍频对应的振动能量,且会激起轮对中高频弹性共振.车轮出现40mm扁疤时,随着车轮旋转运动,轮轨接触点向轮背侧出现周期性横移,轮轨接触斑面积最大可达142mm2,轮轨纵向和横向蠕滑率分别增大4%和16%.轮轨力、轮对振动加速度及轮轨磨耗指数均会随车轮扁疤长度的增加而增大.当列车运行速度在300km/h及以下时,车轮扁疤长度需限制在30mm;当列车运行速度达到350km/h时,车轮扁疤长度需限定在25mm.  相似文献   

5.
为研究钢轨打磨对轮轨接触关系的影响,根据武广高铁历次打磨后轨检车检测的轨道不平顺质量指数,选取现场实际打磨后的轮轨廓形,建立"车轮-钢轨"接触关系模型并进行有限元仿真计算,计算结果表明打磨后轮轨接触点会向钢轨踏面中心移动.通过对钢轨光带和廓形的跟踪调研发现:打磨后钢轨顶部形成20~30mm的光带;打磨13个月后,通过总重约为3.979×107 t,钢轨光带有变宽和双点接触的轻微痕迹;打磨17个月后,通过总重为5.203×107 t,光带明显变宽,宽度约为35mm.通过采集株洲和广州高铁工务段动检车的横向加速度报警量,发现钢轨打磨能有效减少动车横向加速度报警.通过分析长沙供电段供电量的变化,发现钢轨打磨能在一定程度上降低动车的耗电量.  相似文献   

6.
基于列车纵向动力学理论,充分考虑列车的空气制动与动力制动特性,建立了重载列车纵向动力学模型。以2台SS4B型电力机车牵引万吨重载列车为例,仿真分析了空电联合制动工况下列车管减压量对列车纵向动力学性能的影响。结果表明:列车降速距离与降速时间均随列车管减压量的增大而减小,而列车增速距离与增速时间则随列车管减压量的增大而增大;列车管减压量对列车最大拉钩力的影响不明显,而列车最大压钩力则随列车管减压量的增大而显著增大,当列车管减压量从50k Pa增加至70k Pa时,最大拉钩力仅减小了5.9%;而最大压钩力则增加了20.1%。  相似文献   

7.
采用三维数值方法,模拟强横风下货运高速列车周围流场,探索4种风挡方案对货运高速列车气动性能的影响.研究结果表明:风挡局部变化对整列货运列车周围流速、压力以及车体表面压力影响主要体现在风挡区域;全包围风挡区域流速、压力及表面压力分布较均匀,并能在横风下使得整列车具有更小的气动阻力以及侧向力;顶端开口、以及上下两端开口后,...  相似文献   

8.
高速列车不同头部形状的气动性能研究   总被引:1,自引:0,他引:1  
就几种典型形状列车车头,在简化列车外形的情况下,针对高速列车不同运行速度下的气动阻力和升力进行计算.为计算阻力和升力系数,将三维雷诺平均化N-S方程(RANS)结合k-ε湍流模型,用有限体积法(FVM)将控制方程离散求解.用SIMPLE法耦合压力-速度场,通过解类Poisson方程,对压力迭代地修正.模拟计算结果显示采用向首部有收缩的头部形状可获得较好的空气动力学性能;综合考虑与权衡稳定性与机动性,在更高速情况下运行的列车宜优先采用向首部有收缩的头部形状.图7,参12.  相似文献   

9.
为研究不同车轮踏面与高速60N钢轨道岔断面的静态接触特性,针对我国高速动车组常用的LMA,S1002CN和XP55这3种车轮踏面,选择顶宽35 mm曲尖轨所在的60N钢轨道岔断面,根据MATLAB编写迹线法程序以及通过Kalker非赫兹滚动接触CONTACT软件,分别计算轮轨静态接触时的接触几何参数与接触力学参数,以此...  相似文献   

10.
通过对包括CRH2在内的4种不同纵向长细比比例尺为1∶8的高速列车模型进行风洞试验,分析雷诺数对车辆气动力系数的影响;比较4种高速列车模型的气动力特性;对不同流线型外形列车进行大侧偏角试验,研究高速列车在侧风作用下的安全性.研究结果表明:列车流线型头部越长,鼻形更加突出尖锐,头部流线型更加光滑,更有利于降低空气阻力;当模型列车流线型长度相差不大时,纵向长细比系数越大即车头外形越细长,对减阻越有利;4种动车组头车、中车和尾车的侧向力及升力系数均随侧滑角的增大而迅速增大;当侧滑角大于10°时,头部最大纵剖面轮廓线曲率较大的模型,横风作用下的侧向力系数比其他3种模型车的侧向力系数显著增大,升力系数较小.  相似文献   

11.
京津城际是中国第一条350 km/h 的无砟轨道高速铁路,京沪高铁是我国目前全线一次开通运营最长的高速铁路。高速铁路在我国投入运营以来,对高速铁路道岔的打磨至今尚鲜见研究报道。本文通过将这两条高速铁路道岔钢轨与部分国外钢轨的特点进行比较,分析了我国高速铁路道岔钢轨形位与高速列车运行的关系。在北京局联合L&S公司、BWG公司在京津城际永乐站、京沪高铁廊坊站道岔及岔间夹直线进行的示范性打磨实践的基础上,对高速铁路道岔钢轨打磨方法进行了研究评价和归纳总结,提出了对高速铁路道岔进行预防性打磨方案制定的原则和流程、确定了重点打磨区域、提出了打磨要点、制定了确定打磨方法及关键部位的质量验收依据和标准,给出了打磨计算方法模型。该文所述内容实用性强,为高速铁路道岔及岔间夹直线打磨和验收提供了可借鉴的经验。  相似文献   

12.
采用三维、可压N-S方程、k-?双方程湍流模型和滑移网格技术,对不同的流线型长度、头部型线列车明线交会压力波及气动力的关系进行计算分析。研究结果表明:交会压力波头波幅值数值计算结果与实车试验结果较吻合,两者相对误差为4.9%;当列车流线型长度从8 m增大至12 m时,交会压力波、侧向力、侧滚力矩幅值分别减小27.0%,39.2%和36.2%;头部主型线中,水平剖面型线对交会气动性能的影响最大,当水平剖面型线斜率由0.076增大到0.184时,交会压力波、侧向力、侧滚力矩幅值分别增大12.1%,7.3%和8.5%;纵剖面型线对列车交会气动性能的影响较小,当斜率从0.505增大到0.713时,交会压力波、侧向力和侧滚力矩幅值分别增大1.90%,0.65%和0.89%;当横截面型线斜率从0.194增大到0.235时,交会压力波、侧向力和侧滚力矩幅值分别增大4.1%,3.1%和4.0%。  相似文献   

13.
高速列车塞拉门瞬态动力学分析   总被引:1,自引:0,他引:1  
建立了高速列车塞拉门等效分析模型,设定了高速列车交会时动力学栽荷,对高速列车塞拉门进行了模态分析并数值模拟其在动栽荷下的瞬态响应.  相似文献   

14.
随着我国高速铁路的快速发展,空气动力对列车运行影响越发明显.论文介绍了国内外高速列车空气动力学研究现状.分析了车身、侧墙、裙板、挡板及转向架布置的压力测点,以及国内两个权威测试机构的测试系统和数据分析系统.对工程研究具有一定的推动作用.  相似文献   

15.
钢轨长时间暴露在自然环境中,经常受到硬物撞击,表面出现不同形状的硌伤,在局部区域出现应力集中,影响钢轨应力分布,严重时引发轮轨滚动接触疲劳,威胁铁路的行车安全。利用有限元软件ABAQUS建立含不同尺寸初始硌伤形状的钢轨模型,研究硌伤对钢轨残余应力、塑性应变累积和裂纹扩展的影响。结果表明,硌伤坑边缘隆起,出现拉应力状态,残余应力呈环形分布,最大等效塑性应变总是出现在硌伤坑底部;循环载荷作用下,塑性应变累积的速率较小,沿加载方向的硌伤坑形貌明显变宽;在不同初始裂纹方向下,轨头的裂纹扩展可分为沿坑壁横向扩展、沿深度纵向扩展、横向和纵向混合扩展3类;对于圆锥形、球形、楔形硌伤,60°初始裂纹扩展速率最快; 3种硌伤形貌中,圆锥形硌伤最危险。  相似文献   

16.
本文选取某线路磨损较为严重的400 m半径曲线钢轨作为研究对象,采用多体动力学软件UM建立车辆-钢轨耦合动力学模型,不考虑钢轨打磨前后的轨面平顺性,研究分析新轨及打磨前后旧轨廓形与全新车轮LMa车轮踏面接触时车辆动力学特性.结果表明:当横移量大于7 mm时,新轨等效锥度最大,打磨后旧轨等效锥度较打磨前小,车辆通过小半径曲线性能有所降低,但同时也将减小轮轨横向力,减小轮轨磨耗;较打磨前旧轨,打磨后旧轨与LMa车轮踏面接触时,踏面接触斑内纵向蠕滑率最大值分别减小15.07%、2.82%,左右股横向蠕滑率最大值分别减小4.48%、4.69%,左右股磨耗功最大值分别减少18.06%、9.04%;打磨后旧轨轮对横向/垂向加速度变化时域图与新轨几乎重合,且最大值较打磨前分别降低4.46%、19.05%,车辆运行平稳性得到提升;打磨后轨面状态得到改善,剥离掉块得到较好整治,波浪形磨耗得到较好处理,车辆运行品质得到改善.  相似文献   

17.
采取对称分量法和工程近似方法分别计算牵引负荷产生的负序不平衡度与电压损失,讨论牵引与再生制动等各种工况下两供电臂负荷比对负序不平衡度和再生制动对牵引网电压损失的影响,基于计算结果提出应对负序电流和电压损失的若干建议。  相似文献   

18.
为研究不同方向格栅对高速列车车下设备舱通风性能的影响,以一段某型高速列车实车所用设备舱为试验对象开展了风洞试验,同时基于Realizable k-ε湍流模型构建了风洞试验的数值计算模型.通过风洞试验结果验证了数值模型的准确性,并获得了一套适用于设备舱裙板格栅区域的网格划分参数.基于经风洞试验验证的数值模型和网格划分参数,建立了头车包含设备舱的三车编组数值计算模型.以不同方向格栅(竖向和横向)为研究对象,分析了300 km/h速度等级下设备舱格栅通风口的通风量及设备舱内部的速度分布情况.结果表明:装配两种格栅时,设备舱的总进风质量流率基本一致,其中,装配竖向格栅时,其两侧的进风质量流率基本一致,但装配横向格栅时,其两侧的进风质量流率有所差异,相较于前者,其y-侧的质量流率减少了6.59%,y+侧的增加了6.79%.装配竖向格栅时,气流均匀地从整个格栅区域进入,其进入方向与列车运行方向相同,且速度较小;装配横向格栅时,气流集中从格栅右侧区域进入,其进入方向与列车运行方向相反,且速度较大.通过综合对比质量流率及设备舱空间气流速度,发现装配横向格栅时的通风性能较优.  相似文献   

19.
以高速电主轴为研究对象,建立了能够在考虑滚子加工精度的情况下计算电主轴支承轴承每一个滚子受力和轴承刚度的计算模型和转子的动力学模型。结合具体算例研究了滚子加工精度对轴承轴心轨迹、转子临界转速、前三阶振型及不平衡响应的影响,同时研究了径向载荷对高速电主轴不平衡响应的影响。数值计算结果表明,当滚子的加工精度在理想状态时,轴承轴心运动轨迹为一个椭圆,随着滚子加工精度的降低,轴承轴心运动轨迹不再是一个椭圆。当滚动体加工精度和轴向载荷不变时,径向载荷越大,轴端的不平衡响应振幅越大。随着滚动体加工精度的降低,转子的临界转速减小,前三阶振型基本不变。当转子角速度相同时,加工精度越低,转子不平衡响应振幅越大;当加工精度不变时,随着转子角速度的增大,转子不平衡响应振幅越大。  相似文献   

20.
针对铁路单层集装箱表面结构单一、气动阻力特性差等问题,本文设计了适用于集装箱的三角形、梯形、弧形和矩形表面形式沟槽结构.利用ANSYS Fluent软件,采用基于Realized k-ε湍流模型和SIMPLE算法,对比了4种不同表面形式沟槽的集装箱列车模型的气动阻力,结果表明:明线情况下,弧形沟槽结构集装箱列车气动阻力最小;不同表面形式沟槽结构的集装箱列车所受的气动阻力差异主要来自于集装箱;集装箱的压差阻力贡献了主要的气动阻力,弧形沟槽结构集装箱压差阻力最小,而摩擦阻力最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号