首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
采用MOPAC7程序包中的AM1程序,研究了H2N2O2的稳定构象,设计了三种分解的机理,通过计算得到每种机理的过渡态的结构和能量,进而得到每种机理的活化能。结果表明,H2N2O2的分解主要是通过一个五员环过渡态形成N2O和H2O。  相似文献   

2.
给出了NaAc-NaBr-H2O三元体系中NaAc·3H2O-NaBr·2H2O多温截面图,为研究NaAc·3H2O-NaBr·2H2O相变贮热体系提供了理论依据。由NaAc·3H2O和NaBr·2H2O可制得38~53℃的混合相变贮热材料。  相似文献   

3.
本试验研究了蔗渣浆在H2O2漂白前H2SO4预处理的工艺条件,结果表明,最佳酸处理的工艺条件为:温度70℃、浆浓7%、H2SO4用量1.5%和时间30分钟。  相似文献   

4.
本文讨论了H_2O_2的性质,综述了H_2O_2的漂白作用;指出了使用H_2O_2作为漂白剂时应注意事项。  相似文献   

5.
本文对Na2S2O3·5H2O用作储热材料作了较详细的研究.提出了解决Na2S2O3·5H2O在储热时存在的相分离及过冷两大问题的方法,并通过实验证明加入添加剂后的Na2S2O3·5H2O是一种较好的储热材料  相似文献   

6.
KMnO_4-H_2O_2 联合氧化法制备可膨胀石墨   总被引:7,自引:1,他引:6  
文章采用以KMnO4和H2O2作混合氧化剂,在常温下制备具有高膨胀容积的可膨胀石墨。该法已用于大规模工业化生产。其适宜的原料配比为石墨H2SO4(浓度为73%)KMnO4H2O2溶液(浓度为27.5%)的重量比分别为12.80.11(0.03~0.04),该法优点是能在较稀的H2SO4溶液中进行,文章同时对H2O2的作用和石墨插层反应的机理进行了讨论。  相似文献   

7.
本文使用瞬变应答技术,研究了C2H6在Mn2O3催化剂上的氧化反应。根据产物CO2分别对反应物C2H6和O2的浓度阶跃变化结果,证实C2H6的催化氧化反应,必须经历催化剂表面上O2(吸附态)和C2H6(吸附态)的反应步骤,总反应的RDS是催化剂表面上吸附态C2H6分子的形成。实验还证实了CO2不影响C2H6氧化反应的速率,而H2O对此反应有禁阻作用。  相似文献   

8.
CaCl2*6H2O-MgCl2*6H2O多温截面的研究   总被引:3,自引:0,他引:3  
用步冷曲线法研究并绘制了CaCl2·6H2O-MgCl2·6H2O多温截面图,实验显示该截面有两个四相转熔反应,其转熔温度分别为25.0℃和22.0℃.结果表明,CaCl2·6H2O-MgCl2·6H2O混合盐可用于低温相变储热.  相似文献   

9.
采用abinitio3—21G对CN-H2O的相互作用进行了研究,结果表明氢键方式是CN-与H2O作用的主要方式。分析了由CN-+HCN和H2O+CN-作为起始物生成CN-H2O的能量变化,比较了CN-H2O和CN-HF的作用特点  相似文献   

10.
AgNO_3和a-ph_2ppy,(a-(C_6H_5)_2P(NC_5H_5))在加有少量H_2O_2和NaOH的C_2H_5OH水溶液中反应生成标题化合物的灰黑色晶体。属四方晶系,空间群P4_1,a=1.300nm,C=4.076nm,v=6.884nm ̄3,Z=8,D_c=1.67gcm ̄(-3),R=0.059,r_ω=0.072.每一不对称单元中存在二套独立而结构基本相同的[Ag_2(a-ph_2PPy)_2] ̄2+,它的二个Ag原子和二个a-ph_2PPy中-N-C-P-桥的N,P原子联接成为一个稳定非共面八员环,而环内Ag,Ag间距分别是0.314,0.3l0(nm),均未成键。不对称单元中的二个八员环通过的O原子与环上Ag原子的弱成键而具有结构联系。环内还出现了罕见的三配位Ag原子。  相似文献   

11.
采用MOPAC7程序包中的AM1程序 ,研究了H2 N2 O2 的稳定构象 .设计了三种分解的机理 ,通过计算得到每种机理的过渡态的结构和能量 ,进而得到每种机理的活化能 .结果表明 ,H2 N2 O2 的分解主要是通过一个五员环过渡态形成N2 O和H2 O .  相似文献   

12.
对 H2 O2 的分解过程影响因素进行了研究 ,对 H2 O2 的稳定剂进行了比较 ,SH— 2 2非硅型氧漂稳定剂效果最好 ,使 H2 O2 8小时分解率为 1 .89% ,漂白白度为 83%左右  相似文献   

13.
以铂电极为基体,用电沉积方法制备了铁氰化钴修饰电极,研究了该电极的电化学特性及H2O2在该修饰电极上的电化学行为。实验表明,该电极对H2O2具有催化作用;在4.9×10^-5~1.1×10^-3mol/L范围内,峰电流与H2O2的浓度呈线性关系(R=0.9986),检出限为1.3×10^-5mol/L。  相似文献   

14.
过氧化氢分子的键能和成键特性的CNDO/2研究   总被引:1,自引:0,他引:1  
H2O2分子中的O—H键比H2O的略长.而键振动频率v^-和计算的键能EAB值表明.H2O2分子中的O—H键则略强于H2O的。本用CNDO/2方法对其键能进行了计算.并对这一“反常”现象进行了解释。  相似文献   

15.
Ca2+在H2O2促进蚕豆气孔关闭过程中的作用   总被引:2,自引:0,他引:2  
利用表皮生物分析法,通过表皮条缓冲液中加CaCl2研究了Ca^2+在H2O2促进蚕豆气孔关闭过程中的作用.研究发现在不同浓度的H2O2溶液中加入0.05mol/L和0.005mol/L CaCl2均能加强H2O2对蚕豆气孔关闭的促进作用,H2O2和Ca^2 浓度越高,气孔开度减小越明显.推测在H2O2促进蚕豆气孔关闭过程中,保卫细胞质中Ca^2 浓度升高时的来源可能是质外体中的Ca^2+.  相似文献   

16.
H_2O_2用于蛋白水解物脱色的研究   总被引:3,自引:0,他引:3  
目的 :研究H2 O2 用于蛋白质脱色的效果 ,探索H2 O2 用于蛋白水解物脱色的可行性。方法 :应用分光光度法比较H2 O2 与活性炭对蚕蛹蛋白水解物的脱色效果 ,并考察脱色剂对水解产物的影响。结果 :粉末活性炭和H2 O2 均具有较好的脱色效果 ,但各具优缺点。结论 :H2 O2 用于蛋白水解物的脱色效果良好 ,且简便易行 ,但对目标物具有一定的影响 ,用于食品行业需作进一步研究  相似文献   

17.
H2O2对生物法治理石油烃类污染物的影响   总被引:1,自引:0,他引:1  
针对钻井泥浆中的石油烃类污染物,利用实验室分离筛选出的高效石油烃降解菌株,深入研究H2O2对石油烃生物降解的影响.研究表明:H2O2的适宜一次加入浓度为200 mg/L;菌株生长处于停滞期和对数期时,每8hr和2hr向含油泥浆中加入H2O2为最佳;加入H2O2的钻井泥浆中,石油类污染物的的降解率从38.1%提高到83.1%.H2O2的深度氧化和供氧的双重作用对泥浆中石油烃类污染物的生物降解起到明显促进作用.  相似文献   

18.
基于电子与核振动近似方法,应用密度泛函B3P86方法和相对论有效核势SDD计算,结合统计热力学方法, 研究了100K~1000K温度范围内Pd与H2、O2反应的标准生成热力学函数以及反应平衡压力与温度的关系. 结果表明:Pd与H2、O2反应是放热反应,Pd原子吸附H2的放热量大于吸附O2的放热量,温度升高不利于吸附反应进行;Pd对O2的自发吸附温度很低,室温下几乎不能进行,而对H2的自发吸附温度可高达500K以上;在100K~284.394K可自发吸附O2和H2的温度范围内,O2的反应平衡压力比H2的平衡压力高出9~18个数量级. 因此,O2作为杂质气体对目标反应Pd-H2的影响非常有限.  相似文献   

19.
研究羧甲基壳聚糖-Cu2+配合物对H2O2分解的催化活性及影响因素。以壳聚糖为原料,制备水溶性羧甲基壳聚糖(CMC),再以其为配体制备CMC-Cu2+配合物,并将CMC-Cu2+配合物应用于催化H2O2分解的反应,考察了w(CMC)/w(CuCl2)、体系pH值对H2O2分解的影响。结果表明:温度为25℃,w(CMC)/w(CuCl2)为5∶1时形成的CMC-Cu2+配合物,在pH值为7附近,对质量分数为5%的H2O2的分解率12 h为92.5%,24 h为99.5%,说明CMC-Cu2+配合物对H2O2分解有良好的催化作用。  相似文献   

20.
为了解决高溴黄河水臭氧化过程中溴酸盐(BrO-3)生成问题,在连续实验装置中,采用H2O2/O3高级氧化技术(AOPs)技术,研究臭氧(O3)、过氧化氢(H2O2)质量浓度以及水力停留时间(HRT)对黄河水BrO3-生成控制的影响。研究结果表明:H2O2的投加能够有效促进O3消耗;当O3质量浓度为2.9~4.3mg/L时,单独臭氧化过程中,BrO-3生成量为13~50μg/L,均超标,投加H2O2能够有效抑制BrO3-的产生,其抑制效果与H2O2/O3的摩尔比有关,当H2O2/O3摩尔比为1.5时,控制效果最佳,当O3质量浓度低于3.72mg/L时,在此比例时可将BrO-3浓度控制在10μg/L以下,达到现行的饮用水标准;BrO3-生成量与HRT成正比;当O3质量浓度较高时,可通过适当减少HRT控制出水BrO-3浓度。H2O2/O3高级氧化工艺对有机物的去除具有强化作用,出水UV254去除率可达50%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号