首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accardi A  Miller C 《Nature》2004,427(6977):803-807
ClC Cl- channels make up a large molecular family, ubiquitous with respect to both organisms and cell types. In eukaryotes, these channels fulfill numerous biological roles requiring gated anion conductance, from regulating skeletal muscle excitability to facilitating endosomal acidification by (H+)ATPases. In prokaryotes, ClC functions are unknown except in Escherichia coli, where the ClC-ec1 protein promotes H+ extrusion activated in the extreme acid-resistance response common to enteric bacteria. Recently, the high-resolution structure of ClC-ec1 was solved by X-ray crystallography. This primal prokaryotic ClC structure has productively guided understanding of gating and anion permeation in the extensively studied eukaryotic ClC channels. We now show that this bacterial homologue is not an ion channel, but rather a H+-Cl- exchange transporter. As the same molecular architecture can support two fundamentally different transport mechanisms, it seems that the structural boundary separating channels and transporters is not as clear cut as generally thought.  相似文献   

2.
The ClC chloride channels catalyse the selective flow of Cl- ions across cell membranes, thereby regulating electrical excitation in skeletal muscle and the flow of salt and water across epithelial barriers. Genetic defects in ClC Cl- channels underlie several familial muscle and kidney diseases. Here we present the X-ray structures of two prokaryotic ClC Cl- channels from Salmonella enterica serovar typhimurium and Escherichia coli at 3.0 and 3.5 A, respectively. Both structures reveal two identical pores, each pore being formed by a separate subunit contained within a homodimeric membrane protein. Individual subunits are composed of two roughly repeated halves that span the membrane with opposite orientations. This antiparallel architecture defines a selectivity filter in which a Cl- ion is stabilized by electrostatic interactions with alpha-helix dipoles and by chemical coordination with nitrogen atoms and hydroxyl groups. These findings provide a structural basis for further understanding the function of ClC Cl- channels, and establish the physical and chemical basis of their anion selectivity.  相似文献   

3.
Lin SM  Tsai JY  Hsiao CD  Huang YT  Chiu CL  Liu MH  Tung JY  Liu TH  Pan RL  Sun YJ 《Nature》2012,484(7394):399-403
H(+)-translocating pyrophosphatases (H(+)-PPases) are active proton transporters that establish a proton gradient across the endomembrane by means of pyrophosphate (PP(i)) hydrolysis. H(+)-PPases are found primarily as homodimers in the vacuolar membrane of plants and the plasma membrane of several protozoa and prokaryotes. The three-dimensional structure and detailed mechanisms underlying the enzymatic and proton translocation reactions of H(+)-PPases are unclear. Here we report the crystal structure of a Vigna radiata H(+)-PPase (VrH(+)-PPase) in complex with a non-hydrolysable substrate analogue, imidodiphosphate (IDP), at 2.35?? resolution. Each VrH(+)-PPase subunit consists of an integral membrane domain formed by 16 transmembrane helices. IDP is bound in the cytosolic region of each subunit and trapped by numerous charged residues and five Mg(2+) ions. A previously undescribed proton translocation pathway is formed by six core transmembrane helices. Proton pumping can be initialized by PP(i) hydrolysis, and H(+) is then transported into the vacuolar lumen through a pathway consisting of Arg?242, Asp?294, Lys?742 and Glu?301. We propose a working model of the mechanism for the coupling between proton pumping and PP(i) hydrolysis by H(+)-PPases.  相似文献   

4.
5.
Picollo A  Pusch M 《Nature》2005,436(7049):420-423
ClC-4 and ClC-5 are members of the CLC gene family, with ClC-5 mutated in Dent's disease, a nephropathy associated with low-molecular-mass proteinuria and eventual renal failure. ClC-5 has been proposed to be an electrically shunting Cl- channel in early endosomes, facilitating intraluminal acidification. Motivated by the discovery that certain bacterial CLC proteins are secondary active Cl-/H+ antiporters, we hypothesized that mammalian CLC proteins might not be classical Cl- ion channels but might exhibit Cl(-)-coupled proton transport activity. Here we report that ClC-4 and ClC-5 carry a substantial amount of protons across the plasma membrane when activated by positive voltages, as revealed by measurements of pH close to the cell surface. Both proteins are able to extrude protons against their electrochemical gradient, demonstrating secondary active transport. H+, but not Cl-, transport was abolished when a pore glutamate was mutated to alanine (E211A). ClC-0, ClC-2 and ClC-Ka proteins showed no significant proton transport. The muscle channel ClC-1 exhibited a small H+ transport that might be physiologically relevant. For ClC-5, we estimated that Cl- and H+ transport contribute about equally to the total charge movement, raising the possibility that the coupled Cl-/H+ transport of ClC-4 and ClC-5 is of significant magnitude in vivo.  相似文献   

6.
Semaphorins and their receptor plexins constitute a pleiotropic cell-signalling system that is used in a wide variety of biological processes, and both protein families have been implicated in numerous human diseases. The binding of soluble or membrane-anchored semaphorins to the membrane-distal region of the plexin ectodomain activates plexin's intrinsic GTPase-activating protein (GAP) at the cytoplasmic region, ultimately modulating cellular adhesion behaviour. However, the structural mechanism underlying the receptor activation remains largely unknown. Here we report the crystal structures of the semaphorin 6A (Sema6A) receptor-binding fragment and the plexin A2 (PlxnA2) ligand-binding fragment in both their pre-signalling (that is, before binding) and signalling (after complex formation) states. Before binding, the Sema6A ectodomain was in the expected 'face-to-face' homodimer arrangement, similar to that adopted by Sema3A and Sema4D, whereas PlxnA2 was in an unexpected 'head-on' homodimer arrangement. In contrast, the structure of the Sema6A-PlxnA2 signalling complex revealed a 2:2 heterotetramer in which the two PlxnA2 monomers dissociated from one another and docked onto the top face of the Sema6A homodimer using the same interface as the head-on homodimer, indicating that plexins undergo 'partner exchange'. Cell-based activity measurements using mutant ligands/receptors confirmed that the Sema6A face-to-face dimer arrangement is physiologically relevant and is maintained throughout signalling events. Thus, homodimer-to-heterodimer transitions of cell-surface plexin that result in a specific orientation of its molecular axis relative to the membrane may constitute the structural mechanism by which the ligand-binding 'signal' is transmitted to the cytoplasmic region, inducing GAP domain rearrangements and activation.  相似文献   

7.
Y Kanai  M A Hediger 《Nature》1992,360(6403):467-471
  相似文献   

8.
采用CCSD(T)/6-31+G(d,p)//BHHLYP/6-311++G(d,p)+0.9335×ZPE理论方法,构建了在O2/NO存在的情况下Cl原子与甲基乙烯基酮反应的势能面剖面图.该反应体系的势能面上存在多个可能的反应途径,包括直接氢抽提通道和加成-消除通道.计算结果表明:在初始反应通道中,最可行的反应途径是生成加合物CH3C(O)CHCH2Cl(IM1)和CH3C(O)CHClCH2(IM2).在大气条件下,新形成的加合物IM1和IM2可以进一步与O2/NO发生反应,生成最终的主要产物氯乙醛(CH2ClC(O)H)和甲醛(HC(O)H),这与实验中检测到的主要产物是一致的.  相似文献   

9.
Choi JY  Muallem D  Kiselyov K  Lee MG  Thomas PJ  Muallem S 《Nature》2001,410(6824):94-97
Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Initially, Cl- conductance in the sweat duct was discovered to be impaired in CF, a finding that has been extended to all CFTR-expressing cells. Subsequent cloning of the gene showed that CFTR functions as a cyclic-AMP-regulated Cl- channel; and some CF-causing mutations inhibit CFTR Cl- channel activity. The identification of additional CF-causing mutants with normal Cl- channel activity indicates, however, that other CFTR-dependent processes contribute to the disease. Indeed, CFTR regulates other transporters, including Cl(-)-coupled HCO3- transport. Alkaline fluids are secreted by normal tissues, whereas acidic fluids are secreted by mutant CFTR-expressing tissues, indicating the importance of this activity. HCO3- and pH affect mucin viscosity and bacterial binding. We have examined Cl(-)-coupled HCO3- transport by CFTR mutants that retain substantial or normal Cl- channel activity. Here we show that mutants reported to be associated with CF with pancreatic insufficiency do not support HCO3- transport, and those associated with pancreatic sufficiency show reduced HCO3- transport. Our findings demonstrate the importance of HCO3- transport in the function of secretory epithelia and in CF.  相似文献   

10.
ClC chloride channels viewed through a transporter lens   总被引:1,自引:0,他引:1  
Miller C 《Nature》2006,440(7083):484-489
Since its discovery, the ClC family of chloride channels has presented biophysicists with unexpected behaviours and unusual surprises. The latest of these is the realization that not only does the family feature genuine chloride channels, it also includes proton-coupled chloride transporters, which move chloride ions and protons across the membrane in opposite directions. The crystal structure of such a transporter serves as a useful platform for understanding ClC channels, and features of chloride/proton exchange-transport may provide a key for comprehending voltage-dependent gating of the channels.  相似文献   

11.
J Tytgat  P Hess 《Nature》1992,359(6394):420-423
Cloning and expression of voltage-activated potassium ion-channel complementary DNAs has confirmed that these channels are composed of four identical subunits, each containing a voltage sensor. It has been generally accepted that the voltage sensors must reach a permissive state through one or more conformational ('gating') transitions before the channel can open. To test whether each subunit gates independently, we have constructed cDNAs encoding four subunits on a single polypeptide chain, enabling us to specify the subunit stoichiometry. The gating of heterotetramers made up from combinations of subunits with different gating phenotypes strongly suggests that individual subunits gate cooperatively, rather than independently. Nonindependent subunit gating is consistent with measurements of the kinetics of K(+)-channel gating currents and in line with the widespread subunit cooperativity observed in other multisubunit proteins.  相似文献   

12.
X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins   总被引:13,自引:0,他引:13  
The beta, gamma-crystallins form a class of homologous proteins in the eye lens. Each gamma-crystallin comprises four topologically equivalent, Greek key motifs; pairs of motifs are organized around a local dyad to give domains and two similar domains are in turn related by a further local dyad. Sequence comparisons and model building predicted that hetero-oligomeric beta-crystallins also had internally quadruplicated subunits, but with extensions at the N and C termini, indicating that beta, gamma-crystallins evolved in two duplication steps from an ancestral protein folded as a Greek key. We report here the X-ray analysis at 2.1 A resolution of beta B2-crystallin homodimer which shows that the connecting peptide is extended and the two domains separated in a way quite unlike gamma-crystallin. Domain interactions analogous to those within monomeric gamma-crystallin are intermolecular and related by a crystallographic dyad in the beta B2-crystallin dimer. This shows how oligomers can evolve by conserving an interface rather than connectivity. A further interaction between dimers suggests a model for more complex aggregates of beta-crystallin in the lens.  相似文献   

13.
Oldham ML  Khare D  Quiocho FA  Davidson AL  Chen J 《Nature》2007,450(7169):515-521
The maltose uptake system of Escherichia coli is a well-characterized member of the ATP-binding cassette transporter superfamily. Here we present the 2.8-A crystal structure of the intact maltose transporter in complex with the maltose-binding protein, maltose and ATP. This structure, stabilized by a mutation that prevents ATP hydrolysis, captures the ATP-binding cassette dimer in a closed, ATP-bound conformation. Maltose is occluded within a solvent-filled cavity at the interface of the two transmembrane subunits, about halfway into the lipid bilayer. The binding protein docks onto the entrance of the cavity in an open conformation and serves as a cap to ensure unidirectional translocation of the sugar molecule. These results provide direct evidence for a concerted mechanism of transport in which solute is transferred from the binding protein to the transmembrane subunits when the cassette dimer closes to hydrolyse ATP.  相似文献   

14.
Lau WC  Rubinstein JL 《Nature》2012,481(7380):214-218
Ion-translocating rotary ATPases serve either as ATP synthases, using energy from a transmembrane ion motive force to create the cell's supply of ATP, or as transmembrane ion pumps that are powered by ATP hydrolysis. The members of this family of enzymes each contain two rotary motors: one that couples ion translocation to rotation and one that couples rotation to ATP synthesis or hydrolysis. During ATP synthesis, ion translocation through the membrane-bound region of the complex causes rotation of a central rotor that drives conformational changes and ATP synthesis in the catalytic region of the complex. There are no structural models available for the intact membrane region of any ion-translocating rotary ATPase. Here we present a 9.7?? resolution map of the H(+)-driven ATP synthase from Thermus thermophilus obtained by electron cryomicroscopy of single particles in ice. The 600-kilodalton complex has an overall subunit composition of A(3)B(3)CDE(2)FG(2)IL(12). The membrane-bound motor consists of a ring of L subunits and the carboxy-terminal region of subunit I, which are equivalent to the c and a subunits of most other rotary ATPases, respectively. The map shows that the ring contains 12 L subunits and that the I subunit has eight transmembrane helices. The L(12) ring and I subunit have a surprisingly small contact area in the middle of the membrane, with helices from the I subunit making contacts with two different L subunits. The transmembrane helices of subunit I form bundles that could serve as half-channels across the membrane, with the first half-channel conducting protons from the periplasm to the L(12) ring and the second half-channel conducting protons from the L(12) ring to the cytoplasm. This structure therefore suggests the mechanism by which a transmembrane proton motive force is converted to rotation in rotary ATPases.  相似文献   

15.
A cytosolic trans-activation domain essential for ammonium uptake   总被引:2,自引:0,他引:2  
Loqué D  Lalonde S  Looger LL  von Wirén N  Frommer WB 《Nature》2007,446(7132):195-198
Polytopic membrane proteins are essential for cellular uptake and release of nutrients. To prevent toxic accumulation, rapid shut-off mechanisms are required. Here we show that the soluble cytosolic carboxy terminus of an oligomeric ammonium transporter from Arabidopsis thaliana serves as an allosteric regulator essential for function; mutations in the C-terminal domain, conserved between bacteria, fungi and plants, led to loss of transport activity. When co-expressed with intact transporters, mutants inactivated functional subunits, but left their stability unaffected. Co-expression of two inactive transporters, one with a defective pore, the other with an ablated C terminus, reconstituted activity. The crystal structure of an Archaeoglobus fulgidus ammonium transporter (AMT) suggests that the C terminus interacts physically with cytosolic loops of the neighbouring subunit. Phosphorylation of conserved sites in the C terminus are proposed as the cognate control mechanism. Conformational coupling between monomers provides a mechanism for tight regulation, for increasing the dynamic range of sensing and memorizing prior events, and may be a general mechanism for transporter regulation.  相似文献   

16.
Major histocompatibility complex (MHC) class I molecules bind and deliver peptides derived from endogenously synthesized proteins to the cell surface for survey by cytotoxic T lymphocytes. It is believed that endogenous antigens are generally degraded in the cytosol, the resulting peptides being translocated into the endoplasmic reticulum where they bind to MHC class I molecules. Transporters containing an ATP-binding cassette encoded by the MHC class II region seem to be responsible for this transport. Genes coding for two subunits of the '20S' proteasome (a multicatalytic proteinase) have been found in the vicinity of the two transporter genes in the MHC class II region, indicating that the proteasome could be the unknown proteolytic entity in the cytosol involved in the generation of MHC class I-binding peptides. By introducing rat genes encoding the MHC-linked transporters into a human cell line lacking both transporter and proteasome subunit genes, we show here that the MHC-encoded proteasome subunit are not essential for stable MHC class I surface expression, or for processing and presentation of antigenic peptides from influenza virus and an intracellular protein.  相似文献   

17.
Graves AR  Curran PK  Smith CL  Mindell JA 《Nature》2008,453(7196):788-792
Lysosomes are the stomachs of the cell-terminal organelles on the endocytic pathway where internalized macromolecules are degraded. Containing a wide range of hydrolytic enzymes, lysosomes depend on maintaining acidic luminal pH values for efficient function. Although acidification is mediated by a V-type proton ATPase, a parallel anion pathway is essential to allow bulk proton transport. The molecular identity of this anion transporter remains unknown. Recent results of knockout experiments raise the possibility that ClC-7, a member of the CLC family of anion channels and transporters, is a contributor to this pathway in an osteoclast lysosome-like compartment, with loss of ClC-7 function causing osteopetrosis. Several mammalian members of the CLC family have been characterized in detail; some (including ClC-0, ClC-1 and ClC-2) function as Cl--conducting ion channels, whereas others act as Cl-/H+antiporters (ClC-4 and ClC-5). However, previous attempts at heterologous expression of ClC-7 have failed to yield evidence of functional protein, so it is unclear whether ClC-7 has an important function in lysosomal biology, and also whether this protein functions as a Cl- channel, a Cl-/H+ antiporter, or as something else entirely. Here we directly demonstrate an anion transport pathway in lysosomes that has the defining characteristics of a CLC Cl-/H+ antiporter and show that this transporter is the predominant route for Cl- through the lysosomal membrane. Furthermore, knockdown of ClC-7 expression by short interfering RNA can essentially ablate this lysosomal Cl-/H+ antiport activity and can strongly diminish the ability of lysosomes to acidify in vivo, demonstrating that ClC-7 is a Cl-/H+ antiporter, that it constitutes the major Cl- permeability of lysosomes, and that it is important in lysosomal acidification.  相似文献   

18.
H R Bae  A S Verkman 《Nature》1990,348(6302):637-639
Regulation of ion transport by phosphorylation and G proteins occurs in several epithelial and non-epithelial cell plasma membranes1-5. It is not known whether transporters on intracellular membranes are target sites for second messengers. Here we present direct evidence that a chloride conductance in endocytic vesicles from rabbit proximal tubule is activated by phosphorylation through a cyclic AMP-dependent protein kinase. To measure chloride transport, endocytic vesicles were labelled in vivo with a Cl(-)-sensitive fluorescent indicator6-8. It was found that labelled endosomes contained an inward proton pump and a chloride conductance, but no ion-coupled chloride transport, and that the chloride conductance was regulated by protein kinase A. These results, taken together with measurements of chloride effects on ATP-dependent acidification, suggest that endosomal pH can be controlled by phosphorylation of a stilbene-sensitive conductive chloride transporter.  相似文献   

19.
Tang C  Louis JM  Aniana A  Suh JY  Clore GM 《Nature》2008,455(7213):693-696
HIV-1 protease processes the Gag and Gag-Pol polyproteins into mature structural and functional proteins, including itself, and is therefore indispensable for viral maturation. The mature protease is active only as a dimer with each subunit contributing catalytic residues. The full-length transframe region protease precursor appears to be monomeric yet undergoes maturation via intramolecular cleavage of a putative precursor dimer, concomitant with the appearance of mature-like catalytic activity. How such intramolecular cleavage can occur when the amino and carboxy termini of the mature protease are part of an intersubunit beta-sheet located distal from the active site is unclear. Here we visualize the early events in N-terminal autoprocessing using an inactive mini-precursor with a four-residue N-terminal extension that mimics the transframe region protease precursor. Using paramagnetic relaxation enhancement, a technique that is exquisitely sensitive to the presence of minor species, we show that the mini-precursor forms highly transient, lowly populated (3-5%) dimeric encounter complexes that involve the mature dimer interface but occupy a wide range of subunit orientations relative to the mature dimer. Furthermore, the occupancy of the mature dimer configuration constitutes a very small fraction of the self-associated species (accounting for the very low enzymatic activity of the protease precursor), and the N-terminal extension makes transient intra- and intersubunit contacts with the substrate binding site and is therefore available for autocleavage when the correct dimer orientation is sampled within the encounter complex ensemble.  相似文献   

20.
应用微机联用四电极恒电位测试系统研究FeCP_2(NB)/Fe~(3+)(W)在水(W)/硝基苯(NB)界面发生的电子传递以及四苯卟啉及其第一过渡金属配合物(MTPP)对上述电子迁移过程的影响。结果表明,对W/NB界面体系,FeCP_2(NB)被Fe~(3+)(W)的氧化表现为可逆单电子迁移,其微观反应历程预想属复相电子迁移机理,H_2TPP对上述体系不起促进作用,而各MTPP则表现出不同程度的影响,其中,MnTPP与NiTPP促进作用最显著,FeClTPP作用微弱,CuTPP、ZnTPP、CoTPP却反有抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号