首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 43 毫秒
1.
两段提升管催化裂解多产丙烯研究   总被引:11,自引:0,他引:11  
在分析两段提升管催化裂化特点的基础上,提出了重油两段催化裂解多产丙烯兼顾汽油和柴油生产的技术思路,以大庆常渣为原料,采用专门研制的LTB-2催化剂,在提升管反应装置上进行了实验.结果表明,在实验条件下,大庆常渣经两段提升管催化裂解反应,在丙烯收率达到22%的情况下,干气收率只有5.37%,总液收率仍然可以超过82%,并且汽油的烯烃含量低、芳烃含量高,为高辛烷值汽油调和组分;生成的柴油密度在890 kg/m3左右,计算十六烷值在30左右,与通常的催化柴油性质相当.重油经两段提升管催化裂解,可在多产丙烯的同时,兼顾汽油和柴油的生产.  相似文献   

2.
由中国石油大学(华东)自主研究开发的两段提升管催化裂解多产丙烯(TMP)技术工业化试验取得重大成果。试验表明,常压渣油经催化裂解,丙烯收率超过18%,液化气、汽油和柴油收率和接近83%。有关专家认为,该技术工业化试验的突破性进展,对于我国乃至世界化工工业具有重要影响,将带来巨大的经济效益和社会效益。  相似文献   

3.
采用数值模拟的方法对两段提升管催化裂解多产丙烯催化裂化装置提升管反应器下半部的流动状况进行研究.计算结果表明,提升管反应器下部催化剂呈现比较明显的非均匀性,催化剂主要靠近反应器边壁附近分布.由于油气喷入反应器后形成射流区,对油气与催化剂之间的充分接触产生一定影响.经下部喷嘴进入反应器的油气在反应器中存在明显的返混.提升管反应器的下半段,气固两相的非理想流动较为明显.气固两相流动状况的数值模拟为反应器及操作条件优化提供了重要依据.  相似文献   

4.
传统催化裂化提升管反应器的弊端与两段提升管催化裂化   总被引:3,自引:0,他引:3  
通过文献调研、实验研究和重油催化裂化工业装置现场采样,对传统重油催化裂化提升管反应器进行了研究。结果显示,传统重油催化裂化普遍存在反应时间过长、平均催化剂活性低和选择性差及不同反应组分之间存在恶性竞争等弊端。在此基础上,提出了两段提升管催化裂化新概念,并分析了其技术优势。  相似文献   

5.
通过文献调研、实验研究和重油催化裂化工业装置现场采样,对传统重油催化裂化提升管反应器进行了研究.结果显示,传统重油催化裂化普遍存在反应时间过长、平均催化剂活性低和选择性差及不同反应组分之间存在恶性竞争等弊端.在此基础上,提出了两段提升管催化裂化新概念,并分析了其技术优势.  相似文献   

6.
在两段提升管催化裂化实验装置上,以克拉玛依焦化蜡油为原料,考察了常规单段操作条件(反应温度、剂油比和停留时间)对焦化蜡油催化裂化转化性能的影响及相同转化率下焦化蜡油单段和两段反应产物分布的变化,同时,还对比考察了焦化蜡油、减压蜡油单独进料和混合进料单段反应的差别。实验结果表明,与常规单段催化裂化技术相比,两段提升管催化裂化技术在焦化蜡油催化裂化转化方面具有明显优势,相同转化率下,在大幅度提高轻油收率和液收的同时,还会明显降低干气收率。此外,整体来看焦化蜡油、减压蜡油单独进料要明显优于混合进料。  相似文献   

7.
在两段提升管催化裂化实验装置上,以克拉玛依焦化蜡油为原料,考察了常规单段操作条件(反应温度、剂油比和停留时间)对焦化蜡油催化裂化转化性能的影响及相同转化率下焦化蜡油单段和两段反应产物分布的变化,同时,还对比考察了焦化蜡油、减压蜡油单独进料和混合进料单段反应的差别.实验结果表明,与常规单段催化裂化技术相比,两段提升管催化裂化技术在焦化蜡油催化裂化转化方面具有明显优势,相同转化率下,在大幅度提高轻油收率和液收的同时,还会明显降低干气收率.此外,整体来看焦化蜡油、减压蜡油单独进料要明显优于混合进料.  相似文献   

8.
两段提升管FCC新工艺改善催化裂化汽油质量的研究   总被引:7,自引:0,他引:7  
采用内外协调,优化控制的两段提升管催化裂化新工艺,可在汽油生成过程中通过促进氢转移,异构化及芳构化等反应的发生来使汽油中的烯烃向有利于提高汽油质量的方向转化,达到既减少烯烃含量又提高汽油产品质量的目的。通过分析汽油中烯烃含量的变化趋势及转化规律。考察了两段提升管催化裂化新工艺对改善汽油质量的贡献,在相近转化率下,与单段提升管催化裂化数据相比,两段提升管催化裂化新工艺可使汽油中的烯烃含量降低约10个百分点,而辛烷值提高2-6,从而提高了汽油的质量。  相似文献   

9.
利用修正的两段提升管催化裂化的三集总动力学模型分析了两段提升管催化裂化技术的动力学特点,并对中试装置的试验数据进行了拟合.结果表明,此模型能很好地对两段提升管催化裂化技术的原理从动力学方面予以解释,计算数据与试验值吻合良好.  相似文献   

10.
两段提升管催化裂化技术动力学特点分析   总被引:2,自引:0,他引:2  
利用修正的两段提升管催化裂化的三集总动力学模型分析了两段提升管催化裂化技术的动力学特点,并对中试装置的试验数据进行了拟合。结果表明,此模型能很好地对两段提升管催化裂化技术的原理从动力学方面予以解释,计算数据与试验值吻合良好。  相似文献   

11.
两段提升管催化裂化技术在玉门炼油化工总厂的应用   总被引:3,自引:0,他引:3  
2004年9月,采用两段提升管催化裂化(TSRFCC)技术对玉门油田公司炼油化工总厂催化裂化装置成功地进行了改造,到目前为止,装置运行平稳。与改造前相比,改造后虽然加工的原料明显变差,但2005年全年平均总液收比2004年提高了1.45个百分点,液化石油气收率显著提高,干气收率明显下降;无论是否进行汽油回炼,汽油烯烃含量都大幅度下降,辛烷值明显升高;柴油凝点下降,十六烷值因柴油的二次裂化减少而有所升高;装置在原料金属含量高导致剂耗偏高、加工成本明显上升的情况下,经济性仍然得到显著改善。  相似文献   

12.
采用内外协调、优化控制的两段提升管催化裂化新工艺 ,可在汽油生成过程中通过促进氢转移、异构化及芳构化等反应的发生来使汽油中的烯烃向有利于提高汽油质量的方向转化 ,达到既减少烯烃含量又提高汽油产品质量的目的。通过分析汽油中烯烃含量的变化趋势及转化规律 ,考察了两段提升管催化裂化新工艺对改善汽油质量的贡献。在相近转化率下 ,与单段提升管催化裂化数据相比 ,两段提升管催化裂化新工艺可使汽油中的烯烃含量降低约 10个百分点 ,而辛烷值提高 2~ 6 ,从而提高了汽油的质量  相似文献   

13.
两段提升管催化裂化新工艺突破常规催化裂化工艺单一依靠调节反应参数来改善产品分布和质量的控制模式 ,在优化外部操作条件的同时 ,在反应内部改变中间产物的油气分压 ,使反应向理想的方向进行。试验结果表明 ,与常规催化裂化工艺相比 ,这种内外协调、优化控制的新工艺可使柴油产率提高 8个百分点 ,汽油产率仅减少1个百分点 ,而干气产率下降 1个百分点 ,重油产率下降 8个百分点 ,轻油选择性提高 10个百分点以上 ,大大改善了催化裂化产品的分布 ,达到了提高轻油收率、降低干气和重油产率的目的。  相似文献   

14.
重油催化裂化(FCC)工艺中,反应器内多相流动规律和精细数学描述是关键。基于湍流气固两相流理论和裂化反应集总动力学基础研究,详细描述和刻画FCC提升管反应器内流动传热过程及裂化反应历程,并创新性地提出以最大限度提高轻质油收率和生产清洁汽油为目标的催化裂化工艺的发展方向,应按照平行—顺序反应历程要求实现反应和转化过程的"分区调控",并根据烃分子"竞争吸附"和反应特性的差异匹配催化环境。  相似文献   

15.
以动态搅拌装置催化裂解轮胎胶粉实验平台,研究了温度(450~700℃)对轮胎胶粉热解产物分布的影响;并且对比了多种催化剂,包括:NaOH、CaO、Fe粉、Fe_2O_3、C粉以及高炉渣,对轮胎胶粉裂解产物分布的影响。目的是寻找到适合轮胎胶粉裂解的催化剂与使用含量。结果表明,裂解油产率随着裂解炉温度的升高先增加后减小,当试验温度为550℃时,裂解油产率最高。在最佳试验温度550℃时,对比了多种催化剂对各裂解产物组分分布的影响。得出结论:550℃,35%的NaOH含量得到最高裂解油产率。550℃,45%的Fe粉含量,对固体产物分布影响最大。550℃,高炉渣所占比重为35%时,得到的气体产物最多。  相似文献   

16.
以正辛醇为溶剂,在常压下对木粉生物质进行催化液化,液化产物经γ-氧化铝负载的Ru-Co-Mo催化剂进行常压催化裂解,得到生物燃料油。对液化产物及其后的催化裂解产物分析结果表明:常压下的木粉液化率可达90.31%;经过催化裂解后的液化油产率可达69.73%;正辛醇回收率达90%;所得到的液化产物具有很好的可燃性。  相似文献   

17.
利用自行研制的工业提升管在线取样系统对胜利石化总厂重油催化裂化装置提升管进行了在线取样 ,并对取得的液体和催化剂样品进行了分析 ,从而得到了重油催化装置提升管反应器中液体产品分布、催化剂活性、催化剂上碳含量沿提升管高度的变化规律。重油催化裂化反应主要发生在提升管的中下部区域 ,改善产品分布和优化反应进程必须在此区域采取措施 ,应对该区域的反应参数 (反应温度、催化剂性能及进料性质等 )进行控制。在提升管油剂混合处 ,催化进料并没有完全汽化 ,仍有部分重组分以液相存在 ,这对提升管反应器内的反应过程不利 ,易使提升管喷嘴上方区域结焦。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号