首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
InAlAs/InGaAs HEMT跨阻前置放大器的设计与实现   总被引:1,自引:1,他引:1  
提出了基于耗尽型InAlAs/InGaAsHEMT器件的光纤通信接收机中的单电源跨阻前置放大器电路,并给出了设计方法与实验结果,该前置放大器采用单电源供电,单端输入,双端差动输出,由两级源级跟随器,一级输出级以及一个反馈电阻组成。当前置放大器工作在2.5Gbit/s时,跨阻可达62.5dBΩ,采用+5V电源供电,功耗为272mW。  相似文献   

2.
根据OMMIC公司通过测量得到的0.2μm GaAs PHEMT器件参数模型和噪声模型,设计了2.5 Gbit/s的共源跨阻前置放大器.并根据PHEMT晶体管Y参数下的噪声模型,结合Y参数和ABCD参数下的噪声密度矩阵,分析了电路在带有晶体管噪声源情况下整个电路的噪声电压,得出了共源跨阻前置放大器等效输入噪声电流密度的理论公式.实现了芯片制作,并且对芯片进行了噪声参数的测量,测量结果、仿真结果和理论分析结论在6GHz的频率范围内基本符合.  相似文献   

3.
本文基于UMC 0.18 μm CMOS工艺,设计了一款低噪声交叉耦合结构的跨阻放大器.该电路由优化的调节型共源共栅(RGC)结构和输出缓冲级构成,其中采用两级共源放大器作为RGC结构的辅助放大器,用于提升电路的等效跨导和带宽.此外,通过优化电路参数以及在输入端引入阶梯型无源匹配网络来进一步拓展带宽和降低电路噪声.测试结果表明,在探测器等效电容为300pF时,所设计跨阻放大器芯片的-3d B带宽为2.2GHz,跨阻增益为61.8d B?,平均等效输入噪声电流谱密度仅为9 pA/(Hz)~(1/2),成功实现了2.5Gb/s的传输速率.在1.8V电源电压下,芯片功耗为43m W,包括焊盘在内的芯片总面积为1×1mm~2.  相似文献   

4.
采用0.5 μm BCD工艺研制了一种850 nm光接收芯片,包括光电探测器、跨阻前置放大器及后续处理电路.通过器件模拟设计并分析了基于BCD工艺的光电探测器的结构及其特性;设计光接收芯片的增益约为43.23 kΩ,上限截止频率为700 MHz.测试结果表明,探测器暗电流为pA量级,响应度为0.08 A/W.光接收芯片功耗约为100 mW,电噪声为4 nW;在输入313 Mbit/s非归零伪随机二进制序列调制的信号及无误码的情况下,灵敏度为-13.0 dB·m;该光接收芯片速率可达622 Mbit/s.  相似文献   

5.
设计并实现了基于0.2 μm PHEMT工艺的宽带电流模形式前置放大器.前置放大器将光电二极管产生的电流信号放大并转换为差分电压信号.电路为共栅结构,输入电阻小,减小了光检测器寄生电容对电路带宽的影响.设计时采用了电容峰化技术,可获得比普通共栅结构更宽的带宽.后仿真结果为,在单电源5 V,输出负载50 Ω的条件下,该前置放大器的跨阻增益为1.73kΩ,带宽可达到10.6 GHz,同时具有低噪声和较宽的线性范围,芯片面积为607 μm×476 μm.测试结果表明,此前置放大器可以很好地工作在10 Gbit/s速率上.  相似文献   

6.
光纤通信系统接收端前置放大器的性能很大程度上决定着整个光纤通信系统的性能.基于CMOS工艺,给出了一个RGC结构的,应用于2.5Gbit/s光纤通信系统的低噪声跨阻放大器的实现方式.RGC结构具有极低输入电阻特性,同时,为了减小输入等效噪声电流和提高-3dB带宽,采用了跨导增大技术和感性峰值技术.采用SMIC的0.18μm CMOS工艺的仿真结果表明该电路具有61.23dB的跨阻增益,2.09GHz的带宽,输入等效噪声电流为9.4pA/(Hz)~(1/2),电路功耗仅为16.2mW.  相似文献   

7.
针对传统调节型共源共栅(RGC)跨阻放大器在带宽和增益方面的不足,提出1种可拓展带宽和优化平坦度的并联双反馈结构的全差分跨阻放大器.另外,采用反相器替代共源极辅助放大器来提高增益,减小等效输入噪声电流.输出缓冲级的输入端引入无源电感形成π型网络,以抵消其寄生电容.基于UMC 0.18μm CMOS工艺,制备出所设计的跨阻放大器芯片,并将其压焊在FR-4基材的印刷电路板上.测试结果表明,差分跨阻放大器的-3 d B带宽为3.5 GHz,总跨阻增益达60 d BΩ,工作频带内的群延时波动小于25 ps,平均等效输入噪声电流密度为18.72 pA/√Hz.在1.8 V工作电压下,芯片功耗为32.4 mW,裸片面积为800μm×600μm.  相似文献   

8.
基于IBM 0.18,μm SiGe BiCMOS工艺,设计了一款12.5,Gb/s的全差分光接收机模拟前端电路.该电路由跨阻放大器、限幅放大器、直流偏移消除电路和输出缓冲级组成.为获得更高的带宽,本文对Cherry-Hooper结构进行了改进,设计出一种三级级联的限幅放大器,而直流偏移消除电路则使用了差分有源密勒电容(DAMC)来替代传统的片外大电容,提高了电路集成度和稳定性.版图后仿结果表明,在探测器等效电容为300,f F的情况下,光接收机前端电路的跨阻增益为97,d B,-3,d B带宽为11.7,GHz,等效输入噪声电流小于14.2,pA/Hz~(1/2),芯片核心面积为720,μm×700,μm.  相似文献   

9.
张萌 《科技信息》2013,(15):116-116
本文采用TSMC 0.18μm CMOS工艺,设计了一种应用于SDH系统STM-64(10Gb/s)光接收机的前端放大器。在跨阻放大器中,在共栅前馈结构的基础上加入有源电感,设计了一种宽带的跨阻输入级;跨阻放大器的增益级和限幅放大器核心单元采用三阶交叉有源反馈结构来扩展带宽。  相似文献   

10.
为了减弱噪声对可见光通信质量的影响,提高可见光通信系统的抗干扰性,基于台积电180 nmCMOS工艺,提出了一种抗噪能力较强的可见光接收机前端电路.电路主要包括跨阻放大器、限幅放大器、直流偏移消除网络和输出缓冲级.输入端对信号进行两路接收,通过印制电路板绘制把外部两个光电二极管相连,对接收到的光电流信号进行等增益合并,合并信号作为输入信号提供给光接收机模拟放大电路,这种设计实现了分集接收技术,提高了光通信系统的信噪比.跨阻放大器采用调节型共源共栅结构,共源结构作为反馈环路,降低芯片的输入阻抗,共漏结构提高了跨阻放大器的带负载能力.限幅放大器采用改进CherryHooper型限幅放大器结构,引入反馈电阻降低级间等效电阻,扩展有效带宽,并通过增加负载电阻为支路提供偏置电流,有效提高了电路的输出范围.测试结果表明,在电源电压为1.8 V、光电探测器等效电容为5 pF时,光接收机的跨阻增益为88 dBΩ,-3 dB带宽为510 MHz,在误码率小于3.8×10-3的条件下实现了600 Mb/s的数据传输.芯片功耗为43.62 m W,整体面积为624μm×823μm,当误码率为10-9时,基于分集接收的光接收机的灵敏度为-11.5 dBm.对比实验表明,分集接收技术降低了可见光通信的误码率,提高了通信质量,因此基于分集接收技术的光接收机有望应用于室内可见光通信系统领域.  相似文献   

11.
设计了一种具有自动功率控制功能的激光驱动器电路.为了获得良好的性能,该驱动器采用级联差分放大器和源极跟随器分别进行信号放大和级间阻抗匹配.该电路的实现采用了0.35 μm标准CMOS工艺.对该电路进行了测试,测试结果表明,在2.5和5 Gbit/s速率下,电路输出信号眼图清晰.在5 V电源电压、2.5 Gbit/s数据速率下,该驱动器可提供0~68 mA范围内的调制电流,满足长距离光纤通信系统的要求.电路典型功耗480 mW,芯片面积为0.57 mm2.  相似文献   

12.
一种用于光纤传输系统的10 Gbit/s SiGe HBT限幅放大器设计   总被引:1,自引:0,他引:1  
作为光接收机前端的关键部分,限幅放大器要求具有高增益、足够带宽和大动态输入范围。利用IBM公司0.5μmSiGe BiCMOS HBT工艺设计了一种用于10Gbit/s光纤传输系统的限幅放大器。整个系统包括一个输入缓冲级、3个放大单元级、一个用于驱动50Ω传输线的输出缓冲级和一个失调电压补偿回路。模拟结果表明采用3.3V单电源供电时限幅放大器的功耗为200mW,S21小信号增益大于46dB,3dB带宽为8.5GHz,对于输入信号从10mV到1.5V的变化范围内输出信号幅值都可以恒定在800mVpp。  相似文献   

13.
采用CSM 0.35 μm CMOS 工艺,设计了低功耗2.5~3.125 Gbit/s 4∶1复接器.该芯片既可以应用于光纤通信系统SDH STM-16(2.5 Gbit/s)速率级别的光发射机,又可以应用于万兆以太网IEEE 802.3ae 10GBASE-X(3.125 Gbit/s)速率级别的通道接口发送器.系统采用树型结构,核心电路由锁存器、选择器、分频器组成,并采用了CMOS逻辑实现.最高工作速率可达3.5 Gbit/s.芯片供电电压3.3 V,核心功耗为25 mW.该芯片采用SOP-16封装.芯片封装后焊接在高速PCB板上进行测试,封装后芯片最高工作速率为2.3 Gbit/s.  相似文献   

14.
基于IHP 0.25μm SiGe BiCMOS工艺,利用工艺库提供的分束器将入射光信号能量均分给差分电路两侧的Ge波导耦合型探测器,设计了一款应用于高速光通信和光互连领域的增益自动可控型光电集成光接收机.整体电路包括光电探测器、跨阻放大器、两级增益放大器、输出缓冲级、直流偏移消除模块和自动增益控制模块.为解除利用直流偏移消除电路检测峰值电压这种传统方案对消直流电容容值的限制,电路设计了同时具有峰值检测和增益控制功能的自动增益控制模块,并引入放电复位电容来控制采样时间.为了稳定差分电路的直流工作点,并避免引入过多功能模块对电路噪声的恶化,设计了结构灵巧的直流偏移消除电路.同时,为了提升电路带宽,还设计了带射随器反馈的共射跨阻放大器、带简并电容的Cherry-Hooper增益放大器以及可有效降低输入电容对级联电路带宽限制的f_T倍频器.仿真结果表明,在电源电压为3.3 V、输入光功率-10 d Bm的情况下,所设计的光接收机电路增益为80.2 dB?,-3 dB带宽为34.8 GHz,带宽范围内等效输入噪声电流小于35 pA/■.输入光功率在-15~-3 dBm范围内,电路可实现对增益的自动控制,输出摆幅约500 mV,波动小于10%.在40 Gb/s的传输速率下,电路眼图清晰方正,无明显的欠冲与过冲,交叉点清晰,张开度良好,有望用于高速单片集成光接收机中.  相似文献   

15.
为抑制干扰和提高电路的线性,采用0.13μm RF CMOS工艺设计了一款无需声表滤波器的射频前端电路系统.该设计采用一种新的带干扰消除环路可变增益低噪声跨导放大器、25%占空比本振信号的无源混频器和互阻放大器架构来实现抗干扰、低噪声、高线性的射频前端.流片和测试结果表明:该电路抑制带外强干扰达20 d B以上,在2.4 GHz可实现44.98 d B增益和2.03 d B噪声系数,同时获得-7 d Bm的输入三阶互调截点和+72 d Bm的输入二阶互调截点,实现了无需声表滤波器和抗干扰特性;整个射频前端供电电压为1.2 V,功耗为36 m A.  相似文献   

16.
为了得到低电压、低功耗、高速率的激光驱动器电路,采用0.18 μm CMOS工艺设计了10 Gbit/s的激光驱动器集成芯片.电路的核心单元为两级直接耦合的差分放大器和电流输出电路.为扩展带宽、降低功耗,电路中采用了并联峰化技术和放大级直接耦合技术,整个芯片面积为0.94 mm×1.25 mm.经测试,该芯片在1.7 V电源电压时,最高可工作在11 Gbit/s的速率上;当输入10 Gbit/s、单端峰峰值为0.3 V的信号时,在50 Ω负载上的输出电压摆幅超过1.7 V,电路功耗约为77.4 mW.进一步优化后,该电路可适用于STM-64系统.  相似文献   

17.
甚短距离光传输技术   总被引:6,自引:0,他引:6  
介绍了甚短距离(VSR)光传输技术及其发展趋势,对VSR光传输实现中的一些关键技术进行简要论述.以12信道并行垂直腔面激光器(VCSEL)光发射及接收模块为例,讨论发射模块中12通道并行VCSEL阵列驱动电路及接收模块中前置放大器和限幅放大器集成电路的实现.测试结果表明,驱动电路每信道输出调制电流超过30mA,电路速度高达每通道3.125Gbit/s.前置放大器和限幅放大器工作速度达2.5Gbit/s.  相似文献   

18.
在传统共栅放大器结构基础上,基于0.18μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2GHz宽带低噪声放大器(LNA).该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化.后版图仿真结果显示,在0.8~5.2GHz频段内,该宽带LNA的功率增益范围为12.0~14.5dB,输入反射系数S_(11)为-8.0~-17.6dB,输出反射系数S_(22)为-10.0~-32.4dB,反向传输系数S12小于-45.6dB,噪声系数NF为3.7~4.1dB.在3GHz时的输入三阶交调点IIP3为-4.0dBm.芯片在1.5V电源电压下,消耗的功率仅为9.0mW,芯片总面积为0.7mm×0.8mm.  相似文献   

19.
设计并制备了一种Si基单片集成850nm光接收芯片,包括"P+/N-EPI/BN+"结构的光电探测器(PD)、跨阻前置放大电路及其后续处理电路。分析了PD的结构,并对其光谱响应及频率响应进行模拟,在2.0V偏压下,PD在850nm的响应度为0.131A/W,截止频率为400 MHz。采用0.5μm BCD(bipolar、CMOS和DMOS)工艺流片,光接收芯片面积约为900μm×1 100μm。测试结果表明,PD暗电流为pA量级,响应度为0.12A/W。光接收芯片在155 Mb/s速率及误码率(BER)小于10-9情况下,灵敏度为-12.0dBm;在622 Mb/s速率及BER小于10-9情况下,灵敏度为-10.0dBm,并能得到清晰的眼图。将该光接收芯片封装后接入光接收模块,进行点对点光互联实验,获得很好的光信号通路。  相似文献   

20.
在传统共栅放大器结构基础上,基于0.18 μm CMOS工艺,提出一种带多重反馈环路技术的0.8~5.2 GHz宽带低噪声放大器(LNA). 该电路采用的负反馈结构在改善噪声系数和输入阻抗匹配的同时并不需要消耗额外的功耗;采用的双重正反馈结构增加了输入级MOS管跨导设计的灵活性,并可通过输出负载阻抗反过来控制输入阻抗匹配,使得提出的LNA在宽频率范围内实现功率增益、输入阻抗与噪声系数的同时优化. 后版图仿真结果显示,在0.8~5.2 GHz频段内,该宽带LNA的功率增益范围为12.0~14.5 dB,输入反射系数S11为-8.0~-17.6 dB,输出反射系数S22为-10.0~-32.4 dB,反向传输系数S12小于-45.6 dB,噪声系数NF为3.7~4.1 dB. 在3 GHz时的输入三阶交调点IIP3为-4.0 dBm. 芯片在1.5 V电源电压下,消耗的功率仅为9.0 mW,芯片总面积为0.7 mm×0.8 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号