首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结合损伤起始判据和损伤演化准则,建立了完整的韧性断裂准则,基于ABAQUS中韧性损伤材料模型对AZ31B镁合金板材成形极限进行了预测。通过拟合单向拉伸应力应变曲线得到材料本构模型及损伤演化参数,建立了板材的Nakazima半球形凸模胀形有限元仿真模型,再基于韧性断裂准则预测了AZ31B镁合金板材室温下的成形极限,并分析了不同板材断裂失效判据对成形极限的影响。研究结果表明,基于所建立的韧性断裂准则,并以损伤演化过程中应变路径转变作为断裂失效判据,可以较准确地预测镁合金板材成形极限,得到的成形极限图与实验结果吻合较好。  相似文献   

2.
高强度钢板热冲压成形是实现车身轻量化、保证安全性的重要途径,近年来得到汽车和钢铁工业的广泛关注与应用。由于高温工况的引入,高强度钢板的力学行为表现出明显的应变率和温度相关性,为准确评价板料的热成形性带来了挑战。概述了热冲压技术的工艺特点,从热成形极限实验和理论预测两方面展开讨论,介绍了国内外学者的相关研究工作,分析了应变成形极限方法存在的不足,引出了基于损伤力学理论的板材成形性评价方法,分别介绍了连续介质损伤和细观损伤理论在板材成形性方面的若干研究,以及材料损伤参数的识别方法。结合热冲压技术的工艺特点,指出热冲压高强度钢的损伤研究应采用实验、理论及数值仿真相结合的方式,并充分考虑温度、加载速率以及应力状态对损伤演化的影响。本研究可为完善损伤理论在金属板材热冲压中的应用提供借鉴。  相似文献   

3.
针对渐进成形中的破裂缺陷,将Oyane准则引入数值模拟中,有效预测了渐进成形中金属板料的成形极限.首先,针对DC56D+Z钢板,基于获取的Oyane准则材料参数,通过试验与数值模拟确定了破裂积分值I=4为破裂的临界条件.然后,基于响应面法建立了工艺参数与I积分值之间的非线性模型,且通过方差分析验证了该模型的有效性.研究得出:该数值模型可以有效预测最大破裂积分I值,I值随着成形角α、层间距Δz和工具头直径d的增大而增大,3个工艺参数的影响作用逐渐减弱,且αΔz、αd两种组合的交互作用影响较大.  相似文献   

4.
对TC4钛合金进行温度800~1 000℃、应变速率0.01~5 s-1条件下热拉伸试验。基于Normalized Cockcroft&Latham、Oyane和Rice&Tracey 3种损伤模型,引入了Zener-Hollomon参数,通过遗传算法识别临界损伤值,建立TC4钛合金高温损伤模型。将这3种高温损伤模型集成到Forge?软件中,分别对拉伸试验进行仿真计算,比较拉伸试样仿真与试验的断裂长度与断口形貌。结果表明:基于Normalized Cockcroft&Latham高温损伤模型的相关系数R值最大,为0.997。模拟与试验断裂长度具有良好的相关性,且模拟断口与试验断口的形状、颈缩程度吻合度最好,表明该高温损伤模型最适用于预测TC4钛合金的损伤行为。  相似文献   

5.
针对板材渐进成形破裂预测对应变路径的过分依赖且无法实时预测的问题,首先,运用FORTRAN语言,通过ABAQUS有限元软件的材料子程序接口,将于忠奇破裂准则引入DC56D+Z钢板的VUMAT材料子程序中;其次,分别将于忠奇模型与ABAQUS自带Von Mises模型进行单向拉伸和渐进成形的模拟;最后,结合渐进成形实验与有限元模拟分析,以实验结果为标准,根据有限元模拟的结果,逆向寻找出于忠奇准则下渐进成形模型的临界破裂积分值I.研究结果表明:两种有限元模型的应力应变大小数量级相同,分布一致,从而说明了该子程序的有效性;渐进成形模拟过程中最大破裂积分值I出现的位置在零件的侧壁,与实验结果一致,积分值I=17可以作为预测渐进成形过程中板材是否破裂的有效条件.  相似文献   

6.
为了对金属板材破裂过程进行预测,以1060铝合金板材为研究对象,在两点对称式渐进成形的基础上,利用Design-Expert设计了CCD曲面响应方案,以工具头直径、进给量、进给速度、成形角、板厚为影响因子,韧性值为响应因子,通过方差分析建立了破裂预测模型,得到最优工艺参数,并通过有限元模拟和物理成形实验验证预测最优工艺参数.结果表明:破裂预测模型可靠,最优工艺参数为工具头直径15.15,mm、进给量2.99,mm/r、进给速度1,805.42,mm/min、板厚2.5,mm、成形角46°.  相似文献   

7.
针对大锻件设备或配件在热成形过程中产生的裂纹缺陷,采用热力学实验方法,研究了以50#钢为代表的热裂行为.结果显示:临界断裂应变与变形温度和应变速率呈函数关系.基于热裂行为分析和损伤力学理论,提出了预测裂纹发生的韧性断裂判据.将判据应用于不同变形条件下的镦粗试验,能够较好地预测裂纹发生时所对应的压下量及裂纹产生的位置,并通过嵌入不同判据预测镦粗过程中的开裂.结果表明:所建立判据对于大锻件高温热成形过程的开裂现象具有更高的预测精度.  相似文献   

8.
将考虑静水应力和应变历史对材料损伤影响的Oyane损伤模型用于断裂的预测,将局部网格自适应和单元删除技术用于模拟裂纹的产生和扩展,在DEFORM-2D有限元模拟软件中建立了精冲轴对称模型,进行了弹塑性大变形有限元数值模拟.分析了成形过程中静水应力、等效应力、等效应变和损伤的分布以及发展趋势,分析了工艺参数对缺陷的影响规律,试验结果验证了模型的准确性.  相似文献   

9.
TC4钛合金在航空航天工业中有着广泛的应用,热塑性加工中的微观组织演变对其使用性能具有重要的影响。该文通过热-力实验分析,得到TC4合金的加工图,并将加工图信息集成在有限元分析中,对板材轧制工艺进行分析。对TC4钛合金进行等温单向压缩实验获得了材料的流动应力,变形温度为800~1 050℃,应变速率为0.01~20s-1。采用动态材料模型(dynamic material model,DMM)绘制出TC4钛合金的加工图,并通过对压缩的微观组织检查分析验证了加工图的有效性。由加工图可知,在1 000~1 050℃应变速率0.01s-1的区域稳定性最好,为超塑性成形区域,在800~900℃应变速率0.1~20s-1的条件不利于塑性加工,应当避免在此区域加工。通过二次开发,将加工图的信息作为有限元程序DEFORM-2D的后处理变量在成形件中显示,从而直观地显示板材轧制变形不同位置的成形性能。在TC4轧制过程中,板坯基本处于功率耗散效率较高的安全区,有利于材料塑性成形。  相似文献   

10.
为了提高油气管道凹痕缺陷安全评价的准确性,将金属材料的韧性失效准则应用到管道凹痕的损伤评价中.以X80管道凹痕为例,采用有限元法计算不同工况下3种失效准则的管道损伤量并作对比分析.研究发现,管道损伤量随凹痕深度的增加而增加;当凹痕深度大于6%管道外径时,管道损伤量的增长速率减小.其中,Oyane韧性断裂准则计算出的损伤...  相似文献   

11.
在Gurson损伤模型的基础上,采用有限元数值模拟与温热冲压实验相结合的方法,对镁合金板材温热冲压成形过程中的材料损伤过程进行了预测.考虑了板材的塑性各向异性行为,通过用户自定义材料子程序VUMAT将损伤模型嵌入到有限元软件ABAQUS/Explicit中.采用单轴拉伸试验数据与有限元数值模拟结果进行迭代,确定了Gurson模型所需要的材料参数.使用ABAQUS模拟得到了镁合金板材温热冲压过程中微孔洞的演变及分布规律.通过扫描电子显微镜,对不同温度下的AZ31镁合金板材由孔洞增长和聚合引起的内部损伤演化进行了观察分析.研究结果表明,板材中微孔洞的分布与实验数据相吻合,说明本文所提出的方法可以应用于金属板材温热冲压成形性能预测.  相似文献   

12.
采用Gleeble-1500热模拟机对用近液相线铸造方法制得的半固态ZL201合金进行了不同温度和不同应变速率下的压缩变形,并对实验结果进行了回归处理,建立了半固态ZL201合金在不同变形温度、不同应变速率下的数学模型.研究结果表明:当应变速率相同时,压缩应力随变形温度的增加而减小;当应变温度相同时,压缩应力随着应变速率的增加有先增大后减小的趋势.本实验可为半固态合金触变成形的数值模拟和优化半固态金属加工工艺参数提供基础数据.  相似文献   

13.
基于GTN损伤模型,采用有限元软件ABAQUS建立了手机壳的有限元模型,并将模拟结果与试验对照,验证了有限元模型的可靠性。分析了成形温度、压边间隙和摩擦系数等对镁合金手机壳冲压成型过程的影响。通过比较不同参数下的孔洞体积分布,分析出各个工艺参数对手机壳拉深的影响。通过对三个拉深过程中的主要工艺参数模拟结果进行分析比较,得出了AZ31镁合金手机壳最合适的成形温度和压边间隙,而较低的摩擦系数0.05能够使板材更好地成形。  相似文献   

14.
采用Gleeble-3500热模拟机,在变形温度为950~1 150℃、应变速率为0.001~10s-1的条件下,研究了粗大柱状晶粒纯镍的热变形行为和加工图.结果表明:热压缩过程中流变应力随应变速率增大而增大,随变形温度降低而增大.流变应力与应变速率、变形温度之间的关系用Zener-Hollomon参数来描述,热变形激活能为312.4kJ/mol.基于动态材料模型(DMM)热加工图及结合合金相显微组织分析,得到纯镍较优的热加工参数:变形温度为1 060~1 120℃,应变速率为0.03~0.20s-1的蛋形区域.  相似文献   

15.
 采用Gleeble 3500 热模拟机对一种新型高强高韧TC27 钛合金进行等温恒应变速率压缩实验,开展TC27 钛合金的高温变形行为研究,为制定TC27 钛合金的热加工工艺提供依据。研究结果表明,TC27 钛合金应力应变曲线在变形温度较低时大致呈应变软化型;而在变形温度较高且应变速率较低时,应力应变关系曲线基本为稳态流动型。在应变速率为70 s-1时,呈现较大幅的震荡现象。TC27 钛合金的流动应力对变形温度的敏感性在低温变形时要显著大于在高温变形时的;对应变速率的敏感程度随变形温度的升高而降低。利用实验数据对TC27 钛合金分别在700~850℃和850~1150℃温度段建立了本构方程,并具有较高的精度。通过高温变形微观组织观察,发现在变形温度高于β转变温度变形时,随变形温度提高,或应变速率降低,动态再结晶数量增加。  相似文献   

16.
纯镍N6平面热压缩变形行为及加工图   总被引:1,自引:0,他引:1  
利用Gleeble-3800热模拟试验机对纯镍N6在变形温度800~1100℃,应变速率5~40 s-1,应变量70%条件下进行了高温塑性变形压缩试验,分析纯镍N6高温高应变速率热变形行为,得到了材料在不同变形参数条件下的组织变化规律及流变应力变化曲线,利用动态材料模型绘制出了纯镍N6在不同应变条件下的热加工图。通过对组织及热加工图的分析研究,得出变形温度为1000~1100℃,应变速率为5~7 s-1或20~40 s-1以及变形温度为800~900℃,应变速率为5~10 s-1为纯镍N6材料高温高应变速率热变形的两个合理变形参数区间,在参数区间内N6组织均匀;而流变失稳区变形参数条件下得到的组织比较紊乱,晶粒大小不一。纯镍N6热变形后的晶粒尺寸随变形温度升高及应变速率减小而增大。  相似文献   

17.
为了研究GCr15轴承钢温热成形范围的可成形性,在温热成形温度范围基础上,将温度的研究范围进行扩大。采用Gleeble-1500D型热-力模拟试验机对GCr15轴承钢进行热压缩试验,试验参数范围为温度600~1 050℃、应变速率0.01~5 s-1。基于热压缩试验数据、加工图理论和动态材料模型(DMM)建立了GCr15轴承钢考虑应变影响的三维热加工图,描述了GCr15轴承钢在温热变形时应变、温度、应变速率对可成形性的影响。通过金相观察进行微观组织分析,研究了动态再结晶(DRX)的演变过程。结果表明:材料适宜加工参数范围是应变大于0.4,温度850~950℃,应变速率0.01~0.37 s-1。  相似文献   

18.
本文通过对大型曲轴用钢35CrMo 的热力模拟试验和数据处理,探讨了曲轴弯曲镦锻的热成形机制,研究了变形温度、应变速率等参量对35CrMo 钢应力应变关系和再结晶特征的影响。建立了该类钢热成形的材料模型、给有限元数值模拟曲轴弯曲镦锻热成形过程提供了基本数据,也为大型曲轴热成形力能参数和温度制度的合理确定提供了科学依据。材料模型的确定,对于研究热成形实质,预报与控制工艺质量和产品质量乃至新工艺开发都有重要意义。  相似文献   

19.
C级钢因其优越的机械性能而广泛应用于火车车轮、车钩等重要零部件上。该材料零部件通常经热锻成形,因此对该材料在高温下的流动应力进行研究具有重要意义。该文采用Gleeble热力学模拟机对C级钢在温度为1 050~1 250℃、应变速率为0.01~10 s-1条件下的流动应力进行测试,获得C级钢的流动应力数据以及C级钢在不同热变形条件下的峰值及稳态流动应力。实验结果预测了C级钢存在动态再结晶现象,得到了变形温度、应变速率和变形程度对C级钢流变应力的影响规律。基于Sellers-Tegart方程拟合本构参数,包括应力水平参数、应力指数、变形激活能和结构因子,建立了C级钢的本构关系式,可作为C级钢零部件热成形加工工艺选择和参数确定的依据,同时也可作为C级钢零部件锻造工艺数值模拟的基础数据。  相似文献   

20.
国内外钛合金等温锻造进展   总被引:1,自引:0,他引:1  
钛合金变形抗力大,对锻造温度、变形量、冷却速度等工艺参数的变化敏感,这就决定了钛合金不宜采用常规锻造方法。等温锻造成形过程中温度基本不变,应变速率低,可消除钛合金在常温下成形性能差的问题。本文介绍了钛合金等温锻造技术的特点,国内外钛合金等温锻造的发展及其成形温度和变形程度等工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号