首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究新疆阜康矿区主采煤层吸附孔孔隙结构特征,选取该矿区四个典型煤样,基于低温氮吸附实验绘制了煤样的吸附解吸等温线,得到煤的孔隙直径,采用BET模型和BJH模型计算了孔隙比表面积和体积等参数,分析了煤样孔隙比表面积及体积分布规律。结果表明:新疆阜康矿区煤的吸附解吸等温线回滞环很小,吸附孔以一段开口的均匀圆筒形孔为主。煤样吸附孔发育程度差别明显,导致各煤层对瓦斯吸附储存能力有所不同。各煤样孔径分布较为均衡,比表面积以过渡孔占比最大,其次为微孔及中孔;过渡孔和中孔的孔隙体积占比较大,微孔较小。煤样孔隙体积分布规律基本一致,比表面积在过渡孔和中孔范围内分布规律相同,微孔范围内分布差异较大。  相似文献   

2.
孔隙结构是油页岩的一个重要特征,直接影响油页岩内的传热效率与油气流动行为。为分析油页岩孔隙结构在热解过程中的演化规律,采用热重分析与低温氮气吸附(LTNA)手段,定量分析了压力及不同热解终温下油页岩孔隙结构特征。结果表明:抚顺油页岩的有机质降解阶段为350~540℃,干酪根分解与沥青的二次分解在同一温度区间完成,没有明显的两阶段过程。以有机质热解起始温度350℃为界,孔隙结构与类型发生重大改变。低于该温度时以墨水瓶型孔为主,高于该温度时以狭缝型孔为主,有机质热解对油页岩孔隙类型的变化起控制作用。油页岩孔隙结构演化涉及复杂的物化过程,是有机质、热解产物与无机矿物共同作用的结果,有机质的热解使比表面积与孔体积产生大幅增加,研究结果可作为油页岩原位开采的有益参考。  相似文献   

3.
孔隙结构特征分析是泥页岩储层评价的重要内容之一,为了深入了解页岩储层,需要先对页岩的孔隙结构特征进行研究,但是常规的孔隙结构研究方法在泥页岩孔隙特征描述中有局限性。泥页岩含有大量的粘土矿物、石英、长石、岩屑等。各类碎屑含量和排列方式不同,导致泥页岩的孔隙结构特征具有多样性,吸附性能差异很大,这会反映到等温吸附曲线形态上。可以根据等温吸附曲线形态分析泥页岩的孔隙结构特征。在Thommes研究的基础上,分析了泥页岩孔隙结构中,孔喉分选对于等温吸附曲线的影响。  相似文献   

4.
为进一步分析中低阶煤孔隙结构特征,选取新疆矿区4个典型煤样,通过低温氮吸附法和压汞法测试了煤样的孔隙参数,得到2种测试方法下孔隙比表面积及孔隙体积分布,提出2种测试方法的全孔径段孔隙联孔原则:首先在不超过各自测试范围的前提下,测试微孔孔隙特征以氮吸附法为主,中孔及大孔孔隙特征主要以压汞法为主,联孔位置在过渡孔段; 2种方法在同一孔隙直径处比表面积增量或孔隙体积增量差值最小处即为联孔段。分析了实验煤样全孔径段的孔隙特征,研究结果表明:采用氮吸附法和压汞法对煤样全孔径段孔隙结构分析的联孔位置,对于低阶煤为50~60 nm,中阶煤为85~90 nm,均位于过渡孔段;全孔径段孔隙比表面积占比,低阶煤以微孔为主,中阶煤受微孔和过渡孔共同作用;中低阶煤的全孔径段孔隙体积占比均以中大孔为主。  相似文献   

5.
为了制备高速铁路岩溶地基加固工程及高性能水泥基材料,研制一种改性高聚物即水泥基(HPC)注浆材料,对其与常规水泥浆液(Blank)、水泥-水玻璃(C-S)的力学性能及体积稳定性等进行室内试验对比分析;运用压汞测试技术(MIP)探究其硬化后浆体微观组构与宏观力学性能间的本质关联性。研究结果表明:在28 d龄期下,Blank,C-S和HPC试件单轴抗压强度与龄期为7 d的相比分别增大77%,20%和78%,体积损失率分别为18.3%,4.9%和1.2%;聚合物体系的协调效应减小了传统水泥基注浆材料体积失稳及因单掺速凝剂导致后期强度发展缓慢的缺陷;复合掺用多高聚物显著降低了硬化水泥浆体内部孔隙直径即孔径,使孔径分布趋于细化;在28 d龄期下,不同体系的HPC浆体抗压强度与材料内部孔隙率、阈值孔径均呈指数关系,与平均孔径呈线性负相关,揭示其孔隙结构分布特征可有效反映HPC浆体力学性能的变化规律,降低孔径有利于提升其力学性能。  相似文献   

6.
为研究沁水盆地中高煤级煤的孔隙结构特征,采用低温液氮吸附实验测定了不同煤样比表面积及孔径分布数据,依据吸附-解吸曲线和分形维数对煤岩孔隙系统进行分类.结果表明:煤层微小孔较发育,具有比表面积适中(0.418~0.902 m2/g)、平均孔径小(14.6~21.0nm)、孔容小(0.001 86~0.004 53 cm3...  相似文献   

7.
 低温氧化性指标是硫化矿石自燃倾向性鉴定中的主要评价指标。针对多因素综合分析法在评价硫化矿石低温氧化性时测试指标数目过于繁多的问题,以冬瓜山铜矿7个矿样的评价指标为例,运用SPSS软件的相关性分析功能对指标间的相关性进行研究,并通过理论分析解释了相关关系的原因,以此达到对指标的简化目的。针对硫化矿石自燃倾向性鉴定指标的优化具有一定的指导意义。  相似文献   

8.
小麦低温种质及其叶片的光合性能和结构特征   总被引:6,自引:0,他引:6  
通过对小麦冠层温度和有关性状的长期观测,发现自然界存在株温持续偏低的低温种质,与其相对应,也有株温持续偏高的高温种质存在. 低温种质顶部3片功能叶的叶绿素含量、净光合速率均较高温种质为高,其叶片结构具有明显的复杂化倾向,具体表现为叶肉细胞小、排列紧密且层数较多,叶绿体量大、较密集,叶绿体内间质浓、基粒多、基粒片层发达,维管束面积大且间距小,这些都和高温种质形成较大反差,充分体现出结构和功能的和谐与统一. 小麦低温种质这些优良性状的发现为在实践中去努力寻找和培育新的低温材料提供了理论依据.  相似文献   

9.
本文依据低温氮吸附试验的结果,探讨了下花园煤矿突出及非突出煤层在比表面积,孔隙体积及孔径分布等方面的差别,并分析了造成这种差别的原因,同时对该矿突出煤层出现的异常特征做出了解释。  相似文献   

10.
基于核磁共振技术的岩石孔隙结构特征测定   总被引:3,自引:0,他引:3  
为研究岩石的孔隙结构特征,采用核磁共振技术(NMR)对花岗岩进行测量,得到花岗岩的横向弛豫时间t2分布、NMR测量结果和核磁共振成像图像.研究结果表明:花岗岩的t2分布主要为3个峰,第1个峰和第2个峰的面积占峰总面积的98%以上;岩石组成颗粒粒度的不同,引起了岩石核磁共振弛豫特性的差异.花岗岩的平均孔隙度为1.79%,t'2平均值为26.1ms,束缚流体饱和度平均值占88.5%,核磁共振成像显示岩石的孔隙结构特征,为孔隙结构分析提供依据.岩石核磁共振特征的变化规律和成像结果为岩石微观结构和岩石损伤机理研究提供实验数据.  相似文献   

11.
红壤对三氮吸附-解吸性能实验研究   总被引:2,自引:0,他引:2  
以厦门市农田土壤为研究对象,通过室内吸附实验,分析了土壤对三氮的吸附性能,并探讨了氯离子对吸附行为的影响.实验结果表明:红壤对氨态氮具有明显的吸附作用,吸附等温线符合Henry线性等温吸附模型;对亚硝态氮以解吸为主;对硝态氮明显表现为解吸作用;在氯离子作用下,水土体系中有亚硝化作用发生,而硝化作用则明显受到了抑制.在氮素数学模型中,在不考虑亚硝态氮的前提下,对氨态氮需考虑吸附常数,而对硝态氮则需考虑解吸常数.对盐渍化或滨海土壤中三氮迁移转化进行研究时,还要考虑氯离子对三氮迁移转化的影响.  相似文献   

12.
为研究宁夏灵新矿不粘煤的孔隙结构特征对CO吸附的影响,开展了低温液氮吸附试验和CO吸附试验,分析了不粘煤在不同粒径下的孔隙结构特征,讨论了比表面积和孔容分布对CO吸附的影响;利用FHH模型计算了煤样孔隙的分形维数,建立了分形维数与Langmuir参数VL、PL之间的关系,明确了煤样孔隙分形特征对CO吸附的影响。结果表明:在各类孔隙结构中,微孔数量最多;随着煤样粒径减小,煤样总比表面积和总孔容均增加,煤样总比表面积、总孔容与VL呈正相关;煤样在低、中、高3个压力阶段具有不同的吸附特性和分形特征,煤样对CO吸附受分形维数D1和D2影响,随着D1增大,煤样对CO的吸附能力增强,随着D2增大,煤样对CO的吸附能力逐渐减弱;分形维数D1与VL呈正相关,与PL呈负相关,分形维数D2与VL和PL之间相关性不明显。研究结...  相似文献   

13.
本文对目标孔隙率3%的SMA-13,目标孔隙率6%、9%、12%的AM-13及目标孔隙率15%、18%、21%、24%的OGFC-13沥青混合料进行研究,通过室内试验及数字图像处理技术,提供一个较为准确的孔隙分析方法。通过CT扫描出不同沥青混合料的内部微观结构图,利用数字图像技术结合MATLAB软件对其进行二值化处理后,将结果进行三维重构并计算总孔隙率。对重构模型用区域生长函数计算连通孔隙率,并将模型与实验室计算所得总孔隙率、连通孔隙率与渗水系数进行分析,得出三者的函数关系。最后运用ABAQUS软件建立渗透仿真模型进行沥青路面排水模拟。结果发现SMA-13与AM-13只能应对中小降雨情况,当OGFC-13孔隙率为15%到21%时能够应对大雨情况,24%时也可以应对暴雨情况。  相似文献   

14.
煤岩超微孔隙结构特征及其分形规律研究   总被引:2,自引:0,他引:2  
煤岩超微孔隙结构对煤的吸附和强度性能起到非常重要的决定作用.为了对其进行精确测定,采用了高精度压汞仪对来自8种不同硬度的煤样进行压汞法实验,测定得出超微孔隙结构的所有特征参数.根据压汞法基本原理和分形几何学理论建立了切合实际的煤孔隙分形维数计算模型,利用孔隙特征参数计算出各硬度的孔隙结构分形维数.研究发现:煤孔隙结构具有很好的分形特征,煤体越松软,分形性越好,用分形规律研究煤岩孔隙结构越精确;随着煤体硬度的增加,孔隙分形维数不断降低,煤体抗压强度不断增大;建立硬度与孔隙分形维数之间的定量关系式,可以用硬度定量描述煤的吸附性和抗压强度.研究结论对于煤层瓦斯的运移、瓦斯抽放以及瓦斯突出均有着极为重要的意义.  相似文献   

15.
以山西组高煤级煤与页岩样品为例,通过低温氮气吸附实验研究了样品的孔隙结构特征,并基于FHH分形模型计算了样品的分维值,对页岩与煤层的孔隙分形特征进行了对比研究。结果表明:页岩样品以微孔为主,同时含有一定量的过渡孔,主要的储集空间由微孔和过渡孔提供。高煤级煤样品以过渡孔为主,主要的储集空间由过渡孔提供。在测试孔径范围内,页岩样品的比表面积远大于高煤级煤。页岩的孔隙形态上以四周开放的平行板孔和裂缝型孔为主,具有部分细颈瓶孔,高煤级煤的孔隙形态以封闭型孔为主,反映页岩储层微观渗流能力更强,可能是页岩中游离气比例高于煤层的原因之一。页岩与高煤级煤均具有显著的分形特征,页岩样品分维值高于高煤级煤,说明页岩孔隙的空间结构比高煤级煤更为复杂,非均质性更强;同时二者均具有双重分形特征,页岩渗流孔分维值低于吸附孔,反映页岩吸附孔孔隙结构更为复杂。与页岩相比,高煤级煤渗流孔和吸附孔的分维值均小于页岩,孔径分布集中于过渡孔,有利于煤层气快速到达产气高峰;而页岩孔径分布则集中于微孔和过渡孔,吸附气含量更高,并且过渡孔的孔隙结构以平行板孔为主,孔隙结构特征较微孔简单。  相似文献   

16.
为了更好地了解页岩纳米孔隙特征及其对甲烷吸附性能的影响,对四川盆地上三叠统须五段的6个页岩样品进行了分形分析。通过对氮气吸附/解吸等温线的分析表明,页岩在相对压力为0~0.5和0.5~1时具有不同的吸附特征。利用Frenkel-Halsey-Hill(FHH)方程计算得到两个分形维数D_1和D_2。甲烷的吸附性能随着D_1和D_2的增加而增强,其中D_1对吸附有着更显著的影响。进一步研究表明,D_1代表由于页岩表面不规则性产生的孔隙表面分形特征;而D_2代表的是孔隙结构分形特征,其主要受页岩组分(有机碳含量、石英、黏土矿物等)和孔隙参数(平均孔径、微孔含量等)控制。更高的分形维数D_1对应更不规则的孔隙表面,为甲烷吸附提供更多的空间。而更高的分形维数D_2代表更复杂的孔隙结构以及孔隙表面更强烈的毛细凝聚作用,进而增强甲烷的吸附能力。因此,页岩孔隙表面越不规则,孔隙结构越复杂,甲烷吸附能力越强。  相似文献   

17.
煤岩特殊的孔隙结构及甲烷赋存和产出方式决定了其损害机理与常规储层存在明显差异。在此以六盘水地区亦资孔盆地二叠系煤岩气藏为对象,应用压汞和扫描电镜等手段,研究煤岩储层孔隙类型和孔隙结构特征,结合煤岩学、敏感性及工作液损害评价实验,探讨了煤岩气层损害机理。研究表明,煤岩中常见植物组织孔和气孔,裂缝发育,属双重孔隙介质,表现出很强的应力敏感性。工作液易通过天然裂缝系统侵入煤层中,导致裂缝内的固相沉积、水相圈闭和高分子处理剂吸附滞留损害。  相似文献   

18.
目前水平井段井壁失稳是制约页岩气资源钻探开发进程的主要技术难题之一。针对上述技术难题,采用低压氮气吸附与高压压汞实验,分析了硬脆性页岩的微纳米孔隙结构特征,探讨了微纳米孔隙结构特征对页岩气地层井壁稳定性的影响。利用压力传递实验,开展了页岩微纳米尺度裂缝封堵评价实验。研究表明,页岩气地层的井壁失稳与其自身的微纳米孔隙结构特征具有密切关系,微纳米尺度裂缝发育是导致页岩气地层井壁失稳的内在主要因素;在此基础上,提出了页岩气协同稳定井壁钻井液技术对策,其中强化封堵页岩微纳米尺度裂缝是解决页岩气地层井壁失稳的关键技术措施。进一步优选了新型微纳米封堵剂,其粒径在80~200 nm之间呈"单峰"分布,能够有效封堵页岩微纳米尺度裂缝,阻缓压力传递与滤液侵入,增强裂缝性页岩井壁稳定性。  相似文献   

19.
基于COSTT单轴测试法,提出一种改进的用于检测硫化矿石结块特性的单轴测试法.采用该方法对冬瓜山铜矿硫化矿石试件施以不同荷载并设置对照组进行比较.在恒温恒湿条件下,用单轴测试仪测力环的变形值表示试件抗压强度,并就矿石结块特性与结块时间及荷载关系进行分析.研究结果表明:当结块时间相同时,荷载越大,单轴测试仪测力环变形值越大,试件抗压强度越高,即结块强度越大;当荷载相同时,结块时间越长,测力环变形值越大,试件抗压强度越高,即结块强度越大;实验结果与实际结果相吻合,证明了该方法应用于检测硫化矿石结块特性的可行性.  相似文献   

20.
本文就浏阳永和海泡石矿石工艺性质之一──脱色吸附能力作了初浅的研究。试验表明该区海泡石矿石原土的脱色吸附能力是随海泡石含量和矿石的风化程度的增加而增加的。原土通过活化处理其脱色力可以提高2—3倍,经过处理制成的活性白土脱色吸附性能是良好的,试验证明了该区海泡石是一个非常理想的脱色剂和吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号