首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶剂热法合成了Cu2ZnSnS4(CZTS)纳米颗粒.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散谱仪(EDS)和透射电子显微镜(TEM)对样品的结构、化学组成和表面形貌进行了表征.研究了反应温度和硫源对CZTS纳米颗粒的结构、组成和形貌的影响.结果表明,较低的温度下,产物以Cu-Sn-S三元相为主,随着温度升高,Zn2+逐步扩散到晶格中,取代部分Cu2+,形成CZTS四元相.以硫化钠作硫源,合成了组分符合计量比、分散性良好的CZTS纳米颗粒,并采用旋涂方法制备了CZTS薄膜,其光学带隙为1.49eV,适合作为CZTS薄膜电池的吸收层.  相似文献   

2.
采用金属蒸气真空弧(MEVVA)离子源技术对强流Ti离子束注入到纯铜表面的结构和性能进行了系统的研究.材料表面层的机械性能测试表明:强流Ti离子注入纯铜后材料表面的硬度和耐磨性均有提高,相对于纯铜基体,5×1017 cm-2注量注入可以使材料表面硬度提高2.3倍,使表面摩擦因数下降14%.注入层的X射线结构分析表明:金属离子注入后,在纯铜表面注入层中析出了合金相,合金相的析出是材料的表面硬度和耐磨性提高的主要因素.  相似文献   

3.
用乙酰丙酮铜、二水醋酸锌、氯化亚锡和高纯硫分别作为反应的铜源、锌源、锡源和硫源,油胺充当反应溶剂和活性剂,采用热注入法在不同的温度和反应时间下合成出了Cu_2ZnSnS_4纳米晶体.然后,使用X射线衍射、紫外-可见分光光度计、扫描电子显微镜和透射电子显微镜等手段分别对Cu_2ZnSnS_4纳米晶体的晶格结构、吸收谱线和表面形貌进行了表征.通过对比发现,在270℃时合成出的纳米晶体比较纯净,纳米晶体颗粒的尺寸在一定反应时间内随反应时间的延长而增大.得到的产物在有机溶剂甲苯中分散性良好.这样的"墨汁"溶液在后期制备薄膜太阳能电池更有利.  相似文献   

4.
以乙酸锡(Sn(OAc)_4)、CuCl_2·2H_2O和ZnCl_2为金属前驱体原料,正十二硫醇(1-DDT)作为硫源,油胺(OAm)作为溶剂,采用热注入法合成铜锌锡硫(Cu_2ZnSnS_4,CZTS)纳米晶体,考察反应温度、反应时间、溶剂和离子掺杂对晶体形貌、尺寸的影响。将产物用无水乙醇洗涤后分散到正己烷中制成胶体溶液,采用X线衍射仪(XRD)、透射电子显微镜(TEM)、紫外-可见近红外光谱仪(UV-Vis)、拉曼光谱仪和能谱仪(EDS)对合成的纳米晶体进行表征。结果表明:米粒状产物属于纤锌矿Cu_2ZnSnS_4,粒子长度为10~30 nm,它对应的禁带宽度为1. 52 eV。  相似文献   

5.
硫化铋纳米晶的水热合成及表征   总被引:1,自引:0,他引:1  
在低温水热条件下,以BiCl3、Na2S2O3(或Na2S、硫脲)为反应物,制备了硫化铋(Bi2S3)纳米晶.用X射线粉末衍射(XRD)、扫描电镜(SEM)及纳米粒度测定仪对样品的结构及形貌进行了表征分析.结果表明,所得样品为正交晶系的Bi2S3纳米晶,形貌主要为纳米棒;同时硫源、反应温度及反应时间会影响样品的粒径.  相似文献   

6.
在不添加任何表面活性剂的条件下,采用微波辅助液相还原法,以五水硫酸铜为铜源,葡萄糖为还原剂,通过调节葡萄糖的用量,制备了3种形貌的亚微米Cu_2O材料,实现了球体、八面体和正方体形Cu_2O超细晶颗粒的可控合成,利用XRD、TEM、SEM和光催化性能对Cu_2O的微观结构、表面形貌进行了表征.由XRD分析可知,3种形貌的Cu_2O纯度均很高.BET分析表明,球体Cu_2O具有较高的BET比表面积,可以提供更多的活性位点,具有更高的降解能力.光催化降解亚甲基蓝(MB)的结果表明,3种形貌的Cu_2O均表现出较高的光催化活性,在40 min时降解率均达94%以上.其中球体亚微米Cu_2O颗粒对MB模拟废水的降解更为彻底,降解率达97%以上,其一级反应速率常数分别为八面体和正方体Cu_2O的2.10倍和1.58倍.  相似文献   

7.
Cu_2ZnSn(S,Se)_4薄膜太阳能电池吸收层的质量,受薄膜的烧结氛围影响,进而影响其电池器件的性能。利用溶液法,分别在氮气和空气两种氛围下制备Cu_2ZnSn(S,Se)_4吸收层薄膜,系统地研究烧结氛围对Cu_2ZnSn(S,Se)_4薄膜性质的影响。首先,采用甲胺水溶液和硫代乙醇酸的混合溶液为溶剂,依次溶解S、Sn、Zn和Cu单质,配制Cu_2ZnSnS_4前驱体溶液;然后,通过旋涂/烧结的方法,分别在氮气气氛和空气中制得Cu_2ZnSnS_4预制薄膜,进一步对预制薄膜进行高温硒化处理,得到两种氛围的Cu_2ZnSn(S,Se)_4薄膜;最后,经过XRD、Raman、SEM、C-AFM和I-V特性曲线等测试表征。结果发现:氮气气氛的Cu_2ZnSn(S,Se)_4薄膜晶粒尺寸较大、表面形貌更均匀、结晶性和导电率较高,薄膜质量相对更佳,说明氮气氛围更有利于制备适合于高性能电池器件的Cu_2ZnSn(S,Se)_4吸收层薄膜。  相似文献   

8.
采用溶剂热法,以Cd(NO3)2·4H2O和升华硫为镉、硫来源,油胺为反应溶剂和表面活性剂,制备了硫化镉量子点(CdS QDs),并研究了反应温度、反应时间对硫化镉量子点尺寸的影响.通过X射线衍射(XRD)和透射电镜(TEM)对所制备产物的结构和形貌进行了表征.结果表明,所制备的硫化镉量子点结晶度较高,单分散性好,尺寸均一.通过紫外可见吸收光谱(UV-Vis)和荧光光谱(PL)表征了硫化镉量子点随反应温度和时间的变化,结果发现,随反应温度的升高和反应时间的延长,其吸收峰出现了明显的红移,即通过控制反应温度和时间可以控制硫化镉量子点的尺寸和发光颜色.  相似文献   

9.
本文对09 CuWSn耐腐蚀低合金钢在不同高温下作了热弯试验,并对其热弯试样表面作了X线萤光分析和相分析。实验结果表明,热弯时出现的表面裂纹与表面富集的Cu含量有较好的对应关系,当表面层富集的Cu含量大于0.6%时有明显裂纹。表面层富铜相的结构主要是Cu_3Sn,分布在金属表面层和氧化层内。用金相方法观察了Cu_3Sn在金属表面层晶界处的分布。认为热加工时形成的在表面层中Cu_3Sn等富集相的存在,是热加工时表面热裂产生的一个原因。  相似文献   

10.
在低温水热条件下,以NiCl2.6H2O、Na2S2O3、硫脲为反应物,制备了金属硫族化合物NiS纳米晶.用X射线粉末衍射(XRD)、透射电镜(TEM)分别对NiS纳米晶的结构及形貌进行了表征分析.结果表明,所得样品为六方晶系的NiS纳米晶;同时采用不同硫源及表面活性剂聚乙烯吡咯烷酮(PVP)可以获得不同形貌的纳米晶.  相似文献   

11.
采用水热法以Bi(NO3)3.5H2O为铋源、CH3CSNH2为硫源、尿素为矿化剂在丙三醇与水的混合溶剂中合成较小尺寸的Bi2S3纳米棒,采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、紫外-可见分光光度计(UV-Vis-NIR)、荧光分光光度计(PL)等对样品进行检测表征.结果表明:制备的Bi2S3为纯相正交结构,形貌和尺寸受到S与Bi的比例、溶剂种类、反应温度和反应时间等因素影响.通过控制不同的条件可得到形貌均一的纳米棒.并对小尺寸Bi2S3纳米棒的光学性能及生长过程进行了初步讨论.  相似文献   

12.
采用水热法以Bi(NO3)3.5H2O为铋源、CH3CSNH2为硫源、尿素为矿化剂在丙三醇与水的混合溶剂中合成较小尺寸的Bi2S3纳米棒,采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、紫外-可见分光光度计(UV-Vis-NIR)、荧光分光光度计(PL)等对样品进行检测表征.结果表明:制备的Bi2S3为纯相正交结构,形貌和尺寸受到S与Bi的比例、溶剂种类、反应温度和反应时间等因素影响.通过控制不同的条件可得到形貌均一的纳米棒.并对小尺寸Bi2S3纳米棒的光学性能及生长过程进行了初步讨论.  相似文献   

13.
采用双靶共溅射Cu-Sb合金预制层后硫化法制备铜锑硫(Cu Sb S2)薄膜,研究溅射功率对合金成分的影响,并采用X线能量色散谱(EDS)、扫描电镜(SEM)、X线衍射(XRD)和紫外-可见-近红外分光光度计(UV-VIS-NIR)等对硫化后薄膜进行表征,同时制备Cu Sb S2太阳能电池器件并对其输出特性进行表征和分析。研究结果表明:三元Cu Sb S2相由预制层中金属被硫化生成的二元硫化物Cu S和Sb2S3相互反应形成。在400℃下硫化退火可制得结晶良好、表面致密的Cu Sb S2薄膜,其带隙宽度为1.46 e V,并在可见光区具有大于5×104 cm-1的光吸收系数。制作的glass/Mo/Cu Sb S2/Cd S/i-Zn O/Al-doped Zn O/Ag薄膜太阳能电池器件在太阳总辐照度为100 m W/cm2下测试,获得的开路电压和短路电流密度分别达150 m V和1.29 m A/cm2。  相似文献   

14.
利用无机锌盐和硫粉分别为锌源和硫源,在水热条件下合成微米级的硫化锌(ZnS)球形颗粒,X射线衍射分析(XRD)表明所得的(ZnS)为立方晶体结构。考察了反应时间、反应温度以及不同锌源对产品形貌的影响。扫描电镜(SEM)显示材料为微米级球形颗粒,且这些颗粒是由超细颗粒自组装而成。添加表面活性剂十六烷基三甲基溴化铵(CTMAB)后得到了由纳米级薄片组成的花状ZnS,从热力学对反应的可行性进行了分析,提出了球形和花状ZnS材料的形成机理。  相似文献   

15.
为提高Zn_(0.5)Cd_(0.5)S的光解水制氢活性,采用沉淀法,原位合成了Cu_2(OH)_2CO_3-Zn_(0.5)Cd_(0.5)S光催化剂.采用X射线衍射仪、扫描电子显微镜、固体紫外漫反射和气相色谱等测试方法表征了样品的结构、形貌、光吸收性能以及光催化制氢性能.研究了Cu_2(OH)_2CO_3的含量对光催化性能的影响,并探讨了其作为助催化剂的内在机制.结果表明,Cu_2(OH)_2CO_3中的Cu2+可以被Zn_(0.5)Cd_(0.5)S迁移出来的电子还原成Cu+/Cu0,从而加速Zn_(0.5)Cd_(0.5)S的产氢速率.当Cu_2(OH)_2CO_3与Zn_(0.5)Cd_(0.5)S的摩尔比为0.25%时,光催化产氢量最高.  相似文献   

16.
在氧化亚铜(Cu_2O)和二氧化钛(TiO_2)的复合材料中,引入石墨烯(rGO),制备出新型的Cu_2O/(rGO-TiO_2)光催化薄膜. 首先通过电化学沉积法在铜片上制备Cu_2O;然后通过水热法在TiO_2悬浊液中,将氧化石墨烯(GO)还原为rGO,并制备出rGO-TiO_2复合光催化颗粒;最后将rGO-TiO_2涂覆在Cu_2O表面制备出Cu_2O/(rGO-TiO_2)光催化剂. 催化剂的形貌和表面特征采用扫描电镜(SEM)、透射电镜(TEM)进行表征,材料晶体结构采用X射线衍射(XRD)和拉曼光谱(Raman)分析,其光学特性采用紫外-可见漫反射分光光度计(UV-Vis DRS)、荧光分光光度计(PL)进行表征. 结果表明:与Cu_2O-TiO_2比较,Cu_2O/(rGO-TiO_2)薄膜表现出很强的光催化产氢性能,其中负载rGO质量分数为1.0%的样品Cu_2O/(1.0% rGO-TiO_2)薄膜在300 W氙灯的照射下,对体积分数为20%的甲醇溶液进行光催化反应,其产氢速率(326 mmolh-1m-2)是Cu_2O-TiO_2薄膜产氢速率的3.5倍. 此外,分别探讨牺牲剂类型和pH对Cu_2O/(rGO-TiO_2)光催化薄膜的光催化产氢活性的影响. 结果表明:在体积分数为20%的甲醇水溶液(中性)中,该催化剂的产氢性能最佳.  相似文献   

17.
在低温水热条件下,以AgNO3、Na2SeO3或单质硒为反应物,制备了金属硫族化合物Ag2Se纳米晶.用X射线粉末衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)分别对Ag2Se纳米晶的结构及形貌进行了表征分析.结果表明,所得样品为正交晶系的Ag2Se纳米晶,主要形貌为不规则的纳米颗粒;同时采用不同硒源及表面活性剂聚乙烯吡咯烷酮(PVP)可以获得不同形貌的纳米晶.  相似文献   

18.
采用传统的溶剂热技术,以无水乙二胺(en)为溶剂,CdCl2·2.5H2O和硫脲(H2NCSH2N)为镉源和硫源,在相同的反应时间下,经过不同的反应温度合成了CdS纳米晶.利用X射线衍射(XRD)图谱和扫面电子显微(SEM)图像对CdS纳米晶产物进行表征,结果显示产物均为六方相的结构,当温度低于160℃时,产物为纳米颗粒状;当温度高于160℃时,产物为CdS纳米棒状.同时,着重研究了添加剂(硫脲)的添加量对CdS纳米颗粒再结晶产物形貌转变的影响,并分析了产物形貌转变的可能机制.  相似文献   

19.
在十六烷基三甲基溴化铵表面活性剂的作用下,通过改变醋酸锌与硫脲的水热反应时间,可以制备出不同大小的球形纳米硫化锌(Zn S)颗粒。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能量色散谱(EDS)、紫外可见分光光谱(UV-vis)和光致发光光谱(PL)等方法对样品的晶体结构、形态学和光学特性等进行了表征。对不同大小球形纳米Zn S的亚甲基蓝光催化降解活性进行了评价。研究结果表明:随着反应时间的延长,硫化锌结晶核会生长成纳米颗粒并进一步形成粒径超过400 nm的Zn S纳米颗粒,此产物为立方纤锌矿晶体结构。反应9 h所得的纳米Zn S的光催化性能最佳。  相似文献   

20.
采用离子交换法制备Sn、Cu、Fe改性的SAPO-34分子筛,通过扫描电子显微镜(SEM)、X线衍射仪(XRD)、N_2物理吸附、NH_3程序升温脱附(NH_3-TPD)和X线荧光光谱仪(XRF)对改性后的催化剂进行形貌和结构表征。将改性前后的催化剂用于果糖脱水制5-羟甲基糠醛(5-HMF)反应中,考察反应时间、反应介质、催化剂使用量对产物产率的影响。结果表明:改性后的样品表面聚集了无定形颗粒,结晶度、孔容和酸性有所下降;以Sn-SAPO-34作为催化剂,在30 mL二甲基亚砜溶剂中添加0.25 g催化剂、1 g果糖,反应1 h后,转化率可达99.5%,5-HMF的产率为47.7%。在最优条件下将催化剂重复使用5次,产率有所下降,经过分离焙烧后再使用,产率可恢复至原来的水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号